Computer Science and Artificial Intelligence Laboratory Learning From Snapshot Examples
نویسنده
چکیده
Examples are a powerful tool for teaching both humans and computers. In order to learn from examples, however, a student must first extract the examples from its stream of perception. Snapshot learning is a general approach to this problem, in which relevant samples of perception are used as examples. Learning from these examples can in turn improve the judgement of the snapshot mechanism, improving the quality of future examples. One way to implement snapshot learning is the Top-Cliff heuristic, which identifies relevant samples using a generalized notion of peaks. I apply snapshot learning with the Top-Cliff heuristic to solve a distributed learning problem and show that the resulting system learns rapidly and robustly, and can hallucinate useful examples in a perceptual stream from a teacherless system.
منابع مشابه
An Adaptive Learning Game for Autistic Children using Reinforcement Learning and Fuzzy Logic
This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on fuzzy logic to evaluate the social ability level of the children with ASD. The game adapts itsel...
متن کاملRevolution of Artificial Intelligence and the Internet of Objects in the Customer Journey and the Air Sector
Artificial intelligence (AI) is a discipline interested in the processes and methods that allow a machine to perform tasks related to human intelligence. It offers many opportunities related to problem solving, quick decision-making, increasing efficiency and reducing costs. Because of its so various fields of application, artificial intelligence is at the heart of the new industrial revolution...
متن کاملFaster than Optimal Snapshots (for a While)
This paper presents a breakthrough in shared memory computation by giving an implementation of a snapshot object for n processes that has O(log b log n) step complexity for update operations and O(log b) step complexity for scan operations, where b is the number of updates. The algorithm uses only reads and writes. For polynomially many updates, this is an exponential improvement on the previou...
متن کاملMachine Learning and Citizen Science: Opportunities and Challenges of Human-Computer Interaction
Background and Aim: In processing large data, scientists have to perform the tedious task of analyzing hefty bulk of data. Machine learning techniques are a potential solution to this problem. In citizen science, human and artificial intelligence may be unified to facilitate this effort. Considering the ambiguities in machine performance and management of user-generated data, this paper aims to...
متن کاملComputer Science and Artificial Intelligence Laboratory Pyramid Match Kernels: Discriminative Classification with Sets of Image Features
Discriminative learning is challenging when examples are sets of local image features, and the sets vary in cardinality and lack any sort of meaningful ordering. Kernel-based classification methods can learn complex decision boundaries, but a kernel similarity measure for unordered set inputs must somehow solve for correspondences – generally a computationally expensive task that becomes imprac...
متن کامل