TP53 intron 1 hotspot rearrangements are specific to sporadic osteosarcoma and can cause Li-Fraumeni syndrome

نویسندگان

  • Sebastian Ribi
  • Daniel Baumhoer
  • Kristy Lee
  • Edison
  • Audrey S.M. Teo
  • Babita Madan
  • Kang Zhang
  • Wendy K. Kohlmann
  • Fei Yao
  • Wah Heng Lee
  • Qiangze Hoi
  • Shaojiang Cai
  • Xing Yi Woo
  • Patrick Tan
  • Gernot Jundt
  • Jan Smida
  • Michaela Nathrath
  • Wing-Kin Sung
  • Joshua D. Schiffman
  • David M. Virshup
  • Axel M. Hillmer
چکیده

Somatic mutations of TP53 are among the most common in cancer and germline mutations of TP53 (usually missense) can cause Li-Fraumeni syndrome (LFS). Recently, recurrent genomic rearrangements in intron 1 of TP53 have been described in osteosarcoma (OS), a highly malignant neoplasm of bone belonging to the spectrum of LFS tumors. Using whole-genome sequencing of OS, we found features of TP53 intron 1 rearrangements suggesting a unique mechanism correlated with transcription. Screening of 288 OS and 1,090 tumors of other types revealed evidence for TP53 rearrangements in 46 (16%) OS, while none were detected in other tumor types, indicating this rearrangement to be highly specific to OS. We revisited a four-generation LFS family where no TP53 mutation had been identified and found a 445 kb inversion spanning from the TP53 intron 1 towards the centromere. The inversion segregated with tumors in the LFS family. Cancers in this family had loss of heterozygosity, retaining the rearranged allele and resulting in TP53 expression loss. In conclusion, intron 1 rearrangements cause p53-driven malignancies by both germline and somatic mechanisms and provide an important mechanism of TP53 inactivation in LFS, which might in part explain the diagnostic gap of formerly classified "TP53 wild-type" LFS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Does PTEN gene mutation play any role in Li-Fraumeni syndrome?

Background: Li-Fraumeni syndrome (LFS) is one of the most serious hereditary cancer syndromes with a high risk of malignancy in childhood. This syndrome is an autosomal dominant cancer predisposing syndrome due to a germline mutation in the TP53 tumor suppressor gene.   Methods: In this study, a representative family case of Li-Fraumeni syndrome is described. The proband of this family ...

متن کامل

Recommended Guidelines for Validation, Quality Control, and Reporting of TP53 Variants in Clinical Practice.

Accurate assessment of TP53 gene status in sporadic tumors and in the germline of individuals at high risk of cancer due to Li-Fraumeni Syndrome (LFS) has important clinical implications for diagnosis, surveillance, and therapy. Genomic data from more than 20,000 cancer genomes provide a wealth of information on cancer gene alterations and have confirmed TP53 as the most commonly mutated gene i...

متن کامل

Germline TP53 variants and susceptibility to osteosarcoma.

The etiologic contribution of germline genetic variation to sporadic osteosarcoma is not well understood. Osteosarcoma is a sentinel cancer of Li-Fraumeni syndrome (LFS), in which approximately 70% of families meeting the classic criteria have germline TP53 mutations. We sequenced TP53 exons in 765 osteosarcoma cases. Data were analyzed with χ(2) tests, logistic regression, and Cox proportional...

متن کامل

Does PTEN gene mutation play any role in Li-Fraumeni syndrome

BACKGROUND Li-Fraumeni syndrome (LFS) is one of the most serious hereditary cancer syndromes with a high risk of malignancy in childhood. This syndrome is an autosomal dominant cancer predisposing syndrome due to a germline mutation in the TP53 tumor suppressor gene. METHODS In this study, a representative family case of Li-Fraumeni syndrome is described. The proband of this family was a 43-y...

متن کامل

Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations

Genomic rearrangements are thought to occur progressively during tumor development. Recent findings, however, suggest an alternative mechanism, involving massive chromosome rearrangements in a one-step catastrophic event termed chromothripsis. We report the whole-genome sequencing-based analysis of a Sonic-Hedgehog medulloblastoma (SHH-MB) brain tumor from a patient with a germline TP53 mutatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015