Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production.
نویسندگان
چکیده
In this paper, we report the surface assembly of a functional minicellulosome by using a synthetic yeast consortium. The basic design of the consortium consisted of four different engineered yeast strains capable of either displaying a trifunctional scaffoldin, Scaf-ctf (SC), carrying three divergent cohesin domains from Clostridium thermocellum (t), Clostridium cellulolyticum (c), and Ruminococcus flavefaciens (f), or secreting one of the three corresponding dockerin-tagged cellulases (endoglucanase [AT], exoglucanase [EC/CB], or β-glucosidase [BF]). The secreted cellulases were docked onto the displayed Scaf-ctf in a highly organized manner based on the specific interaction of the three cohesin-dockerin pairs employed, resulting in the assembly of a functional minicellulosome on the yeast surface. By exploiting the modular nature of each population to provide a unique building block for the minicellulosome structure, the overall cellulosome assembly, cellulose hydrolysis, and ethanol production were easily fine-tuned by adjusting the ratio of different populations in the consortium. The optimized consortium consisted of a SC:AT:CB:BF ratio of 7:2:4:2 and produced almost twice the level of ethanol (1.87 g/liter) as a consortium with an equal ratio of the different populations. The final ethanol yield of 0.475 g of ethanol/g of cellulose consumed also corresponded to 93% of the theoretical value. This result confirms the use of a synthetic biology approach for the synergistic saccharification and fermentation of cellulose to ethanol by using a yeast consortium displaying a functional minicellulosome.
منابع مشابه
Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome
BACKGROUND The recalcitrant nature of cellulosic materials and the high cost of enzymes required for efficient hydrolysis are the major impeding steps to their practical usage for ethanol production. Ideally, a recombinant microorganism, possessing the capability to utilize cellulose for simultaneous growth and ethanol production, is of great interest. We have reported recently the use of a yea...
متن کاملSelf-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production.
Yeast to directly convert cellulose and, especially, the microcrystalline cellulose into bioethanol, was engineered through display of minicellulosomes on the cell surface of Saccharomyces cerevisiae. The construction and cell surface attachment of cellulosomes were accomplished with two individual miniscaffoldins to increase the display level. All of the cellulases including a celCCA (endogluc...
متن کاملEngineering yeast with bifunctional minicellulosome and cellodextrin pathway for co-utilization of cellulose-mixed sugars
BACKGROUND Consolidated bioprocessing (CBP), integrating cellulase production, cellulose saccharification, and fermentation into one step has been widely considered as the ultimate low-cost configuration for producing second-generation fuel ethanol. However, the requirement of a microbial strain able to hydrolyze cellulosic biomass and convert the resulting sugars into high-titer ethanol limits...
متن کاملEfficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter
BACKGROUND The recombinant yeast strains displaying the heterologous cellulolytic enzymes on the cell surface using the glycosylphosphatidylinositol (GPI) anchoring system are considered promising biocatalysts for direct conversion of lignocellulosic materials to ethanol. However, the cellulolytic activities of the conventional cellulase-displaying yeast strains are insufficient for the hydroly...
متن کاملCellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase
BACKGROUND Cellulosic biomass is considered as a promising alternative to fossil fuels, but its recalcitrant nature and high cost of cellulase are the major obstacles to utilize this material. Consolidated bioprocessing (CBP), combining cellulase production, saccharification, and fermentation into one step, has been proposed as the most efficient way to reduce the production cost of cellulosic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 76 22 شماره
صفحات -
تاریخ انتشار 2010