An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid
نویسندگان
چکیده
We study the Rayleigh-Stokes problem for a generalized second-grade fluid which involves a Riemann-Liouville fractional derivative in time, and present an analysis of the problem in the continuous, space semidiscrete and fully discrete formulations. We establish the Sobolev regularity of the homogeneous problem for both smooth and nonsmooth initial data [Formula: see text], including [Formula: see text]. A space semidiscrete Galerkin scheme using continuous piecewise linear finite elements is developed, and optimal with respect to initial data regularity error estimates for the finite element approximations are derived. Further, two fully discrete schemes based on the backward Euler method and second-order backward difference method and the related convolution quadrature are developed, and optimal error estimates are derived for the fully discrete approximations for both smooth and nonsmooth initial data. Numerical results for one- and two-dimensional examples with smooth and nonsmooth initial data are presented to illustrate the efficiency of the method, and to verify the convergence theory.
منابع مشابه
Subordination Principle for a Class of Fractional Order Differential Equations
The fractional order differential equation u′(t) = Au(t) + γD t Au(t) + f(t), t > 0, u(0) = a ∈ X is studied, whereA is an operator generating a strongly continuous one-parameter semigroup on a Banach space X , D t is the Riemann–Liouville fractional derivative of order α ∈ (0, 1), γ > 0 and f is an X-valued function. Equations of this type appear in the modeling of unidirectional viscoelastic ...
متن کاملAn inverse problem to estimate an unknown order of a Riemann–Liouville fractional derivative for a fractional Stokes’ first problem for a heated generalized second grade fluid
In this paper, we propose a numerical method to estimate the unknown order of a Riemann–Liouville fractional derivative for a fractional Stokes’ first problem for a heated generalized second grade fluid. The implicit numerical method is employed to solve the direct problem. For the inverse problem, we first obtain the fractional sensitivity equation by means of the digamma function, and then we...
متن کاملExact Solutions of Rayleigh-Stokes Problem for Heated Generalized Maxwell Fluid in a Porous Half-Space
The Rayleigh-Stokes problem for a generalized Maxwell fluid in a porous half-space with a heated flat plate is investigated. For the description of such a viscoelastic fluid, a fractional calculus approach in the constitutive relationship model is used. By using the Fourier sine transform and the fractional Laplace transform, exact solutions of the velocity and the temperature are obtained. Som...
متن کاملA Fourier method and an extrapolation technique for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative ?
In this article, we consider Stokes’ first problem for a heated generalized second grade fluid with fractional derivative (SFP-HGSGF). Implicit and explicit numerical approximation schemes for the SFP-HGSGF are presented. The stability and convergence of the numerical schemes are discussed using a Fourier method. In addition, the solvability of the implicit numerical approximation scheme is als...
متن کاملAN ADAPTIVE WAVELET SOLUTION TO GENERALIZED STOKES PROBLEM
In this paper we will present an adaptive wavelet scheme to solvethe generalized Stokes problem. Using divergence free wavelets, theproblem is transformed into an equivalent matrix vector system, thatleads to a positive definite system of reduced size for thevelocity. This system is solved iteratively, where the applicationof the infinite stiffness matrix, that is sufficiently compressible,is r...
متن کامل