Flexural fatigue behavior of machinable and light-activated hybrid composites for esthetic restorations.
نویسندگان
چکیده
The purpose of this study was to determine the flexural strength and flexural fatigue strength of a machinable composite (GN-I) and three hybrid composites (Artglass, Estenia, and Gradia). Specimens (2 x 2 x 25 mm) were polymerized in a laboratory photo-curing unit and then immersed in water at 37 degrees C for 24 h, 6 months, and 1 year. After each immersion period, flexural strengths (4-PFS) were measured at a cross-head speed of 1 mm/min in 4-point bending (span = 20 mm; distance between inside loading points = 10 mm). The cyclic fatigue test was performed at 2.0 Hz on a fatigue tester. The staircase method was employed for flexural fatigue strength (FFS) using a 5000 cyclic load limitation, 5-MPa stress increment, and 20 specimens for each material. Both 4-PFS and FFS of the machinable composite after all immersion periods were significantly greater than those of the three hybrid composites. The FFS results followed the same pattern as those of the 4-PFS. The Estenia material exhibited the highest 4-PFS and FFS after 24 h of immersion among three hybrid composites, whereas after 1 year of immersion, all three composites showed almost identical 4-PFS and FFS statistically. A strong correlation was observed between 4-PFS and FFS of the machinable composite and three hybrid resin composites.
منابع مشابه
Effects of glass fiber layering on the flexural strength of microfill and hybrid composites.
STATEMENT OF THE PROBLEM In stress-bearing cavities, low fracture resistance adversely affects the longevity of the dental resin composite restorations. PURPOSE The aim of this in vitro study was to investigate the effect of glass fiber layering on the flexural strength of microfill and hybrid composites. MATERIALS AND METHODS Flexural test specimens (N = 75) were prepared according to Inte...
متن کاملThe influence of cellulose pulp and cellulose microfibers on the flexural performance of green-engineered cementitious composites
The aim of this study was to investigate the flexural behavior of engineered cementitious composites (ECCs) reinforced by cellulose pulp (CP) and cellulose microfibers (CMF). The reinforcements were obtained from chemical-mechanical treatments of Kraft paper and used in ECC mix design. Results showed that cement reinforced by CP exhibited a strain-hardening behavior in the three-point bending t...
متن کاملMechanical Properties of Graphene/Epoxy Nanocomposites under Static and Flexural Fatigue Loadings
In the present study, the effect of various weight fractions of graphene nanoplatelet (GPL) on flexural fatigue behavior of epoxy polymer has been investigated at room temperature and generally the temperature was monitored on the surface of specimen during each test. The flexural stiffness of grapheme nano-platelet/epoxy nanocomposites at 0.1, 0.25 and 0.5 wt. % as a main effective parameter o...
متن کاملElectrical and Mechanical Performance of Hybrid and Non-hybrid Composites
This paper investigated the moisture absorption, mechanical behavior and the dielectric performance of hybrid and non-hybrid polymeric composites. Hand lay-up technique was used for processing carbon; glass reinforced polyester resin composites (non-hybrid) and carbon-glass/polyester hybrid composites with various fiber configurations. The maximum resistance of water absorption was obtained for...
متن کاملContinuous-fiber preform reinforcement of dental resin composite restorations.
OBJECTIVES Direct-filling resin composites are used in relatively small restorations and are not recommended for large restorations with severe occlusal-stresses. The aim of this study was to reinforce composites with fiber preforms, and to investigate the effects of layer thickness and configurations on composite properties. It was hypothesized that fiber preforms would significantly increase ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part B, Applied biomaterials
دوره 70 2 شماره
صفحات -
تاریخ انتشار 2004