Asymmetric photocross-linking pattern of restriction endonuclease EcoRII to the DNA recognition sequence.
نویسندگان
چکیده
The EcoRII homodimer engages two of its recognition sequences (5'-CCWGG) simultaneously and is therefore a type IIE restriction endonuclease. To identify the amino acids of EcoRII that interact specifically with the recognition sequence, we photocross-linked EcoRII with oligonucleotide substrates that contained only one recognition sequence for EcoRII. In this recognition sequence, we substituted either 5-iododeoxycytidine for each C or 5-iododeoxyuridine for A, G, or T. These iodo-pyrimidine bases were excited using a UV laser to result in covalent cross-linking products. The yield of EcoRII photocross-linked to the 5'-C of the 5'-CCAGG strand of the recognition sequence was 45%. However, we could not photocross-link EcoRII to the 5'-C of the 5'-CCTGG strand. Thus, the contact of EcoRII to the bases of the recognition sequence appears to be asymmetric, unlike that expected for most type II restriction endonucleases. Tryptic digestion of free and of cross-linked EcoRII, followed by high performance liquid chromatography (HPLC) separation of the individual peptides and Edman degradation, identified amino acids 25-49 of EcoRII as the cross-linking peptide. Mutational analysis of the electron-rich amino acids His(36) and Tyr(41) of this peptide indicates that Tyr(41) is the amino acid involved in the cross-link and that it therefore contributes to specific DNA recognition by EcoRII.
منابع مشابه
Specificity changes in the evolution of type II restriction endonucleases: a biochemical and bioinformatic analysis of restriction enzymes that recognize unrelated sequences.
How restriction enzymes with their different specificities and mode of cleavage evolved has been a long standing question in evolutionary biology. We have recently shown that several Type II restriction endonucleases, namely SsoII (downward arrow CCNGG), PspGI (downward arrow CCWGG), Eco-RII (downward arrow CCWGG), NgoMIV (G downward arrow CCGGC), and Cfr10I (R downward arrow CCGGY), which reco...
متن کاملIdentification of a base-specific contact between the restriction endonuclease SsoII and its recognition sequence by photocross-linking.
A target sequence-specific DNA binding region of the restriction endonuclease Sso II was identified by photocross-linking with an oligodeoxynucleotide duplex which was substituted with 5-iododeoxy-uridine (5-IdU) at the central position of the Sso II recognition site (CCNGG). For this purpose the Sso II-DNA complex was irradiated with a helium/cadmium laser (325 nm). The cross-linking yield obt...
متن کاملStructural mechanisms for the 5′-CCWGG sequence recognition by the N- and C-terminal domains of EcoRII
EcoRII restriction endonuclease is specific for the 5'-CCWGG sequence (W stands for A or T); however, it shows no activity on a single recognition site. To activate cleavage it requires binding of an additional target site as an allosteric effector. EcoRII dimer consists of three structural units: a central catalytic core, made from two copies of the C-terminal domain (EcoRII-C), and two N-term...
متن کاملStructural insight into the specificity of the B3 DNA-binding domains provided by the co-crystal structure of the C-terminal fragment of BfiI restriction enzyme
The B3 DNA-binding domains (DBDs) of plant transcription factors (TF) and DBDs of EcoRII and BfiI restriction endonucleases (EcoRII-N and BfiI-C) share a common structural fold, classified as the DNA-binding pseudobarrel. The B3 DBDs in the plant TFs recognize a diverse set of target sequences. The only available co-crystal structure of the B3-like DBD is that of EcoRII-N (recognition sequence ...
متن کاملEvolutionary relationship between different subgroups of restriction endonucleases.
The type II restriction endonuclease SsoII shows sequence similarity with 10 other restriction endonucleases, among them the type IIE restriction endonuclease EcoRII, which requires binding to an effector site for efficient DNA cleavage, and the type IIF restriction endonuclease NgoMIV, which is active as a homotetramer and cleaves DNA with two recognition sites in a concerted reaction. We show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 277 16 شماره
صفحات -
تاریخ انتشار 2002