Angular distortive matrices of phase transitions in the fcc-bcc-hcp system

نویسنده

  • Cyril Cayron
چکیده

This work generalizes the one-step model previously developed on fccbcc martensitic transformations to the larger family of phase transitions in the fcc-bcc-hcp system. The angular distortive matrices are calculated for the bccfcc, bcchcp and fcchcp transitions, and for fccfcc mechanical twinning. The analytical expressions of the continuous atomic displacements, lattice distortion and lattice correspondence matrices result directly from the orientation relationships; the unique assumption is that the atoms are hard-spheres that can’t interpenetrate each other. The displacive transformations occur in one-step by the change of the unique parameter which is the angle of distortion, without any defined intermediate phase or lattice shearing. The matrices of complete distortion form an algebra over the number field Q(√6). The habit planes are predicted on the simple criterion that they are untilted by the distortion; the results are compared to experimental observations published in literature. Shuffle is required for bcchcp and fcchcp transitions because the hcp primitive Bravais lattice contains two atoms instead of one for the fcc and bcc phases; the analytical expressions of the shuffle trajectories are determined. Different crystallographic aspects are discussed. The steric barriers on dense planes are calculated and compared for fccfcc mechanical twining and fccbcc martensitic transformation. A distinction between the orientational and distortional variants is introduced, with an example given for the fcchcp transformation. Some crystallographic properties that could help the understanding of the transformation reversibility are also detailed. This approach is directly applicable to mechanical twinning in bcc and hcp crystals, and probably to diffusion-limited displacive transformations. This work gives a unified approach of the crystallography of displacive phase transformations and mechanical twinning in hardsphere packed metallic alloys.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamics and Equations of State of Iron to 350 GPa and 6000 K

The equations of state for solid (with bcc, fcc, and hcp structures) and liquid phases of Fe were defined via simultaneous optimization of the heat capacity, bulk moduli, thermal expansion, and volume at room and higher temperatures. The calculated triple points at the phase diagram have the following parameters: bcc-fcc-hcp is located at 7.3 GPa and 820 K, bcc-fcc-liquid at 5.2 GPa and 1998 K,...

متن کامل

Path integral Monte Carlo study of quantum-hard sphere solids.

A path integral study of the fcc, hcp, and bcc quantum hard-sphere solids is presented. Ranges of densities within the interval of reduced de Broglie wavelengths 0.2≤λB(*)≤0.8 have been analyzed using Monte Carlo simulations with Cao-Berne propagator. Energies, pressures, and structural quantities (pair radial correlation functions, centroid structure factors, and Steinhardt order parameters) h...

متن کامل

In situ phase transformation and deformation of iron at high pressure and temperature

With a membrane based mechanism to allow for pressure change in a sample in a radial diffraction diamond anvil cell and simultaneous infrared laser heating, it is now possible to investigate texture changes during deformation and phase transformations over a wide range of temperature-pressure conditions. The device is used to study bcc , fcc , and hcp iron. In bcc iron, room temperature compres...

متن کامل

Texture development in friction stir welds

The shear textures that develop in friction stir welds are reviewed and discussed. In all the materials examined, including face centred cubic (fcc), body centred cubic (bcc) and hexagonal close-packed (hcp) materials, friction stir welding produces a predominant shear texture with the close-packed directions aligned with the shear direction (SD) and the close-packed plane normal perpendicular ...

متن کامل

Theoretical study of the cohesive and structural properties of Mo and W in bcc, fcc, and hcp structures.

The structural properties of Mo and % in the bcc, fcc, and hcp structures are calculated using a fully-self-consistent pseudopotential linear combination of atomic orbitals method. Equilibrium lattice constants, cohesive energies, bulk moduli, differences in structural energies, and Mullikenpopulation analyses are obtained. For both elements, the bcc structure is found to be the most stable whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016