Set-theoretic Yang-baxter Solutions via Fox Calculus
نویسندگان
چکیده
We construct solutions to the set-theoretic Yang-Baxter equation using braid group representations in free group automorphisms and their Fox differentials. The method resembles the extensions of groups and quandles.
منابع مشابه
Coxeter-like Groups for Groups of Set-theoretic Solutions of the Yang–baxter Equation
We attach with every finite, involutive, nondegenerate set-theoretic solution of the Yang–Baxter equation a finite group that plays for the associated structure group the role that a finite Coxeter group plays for the associated Artin–Tits group.
متن کاملSet-theoretic solutions of the Yang-Baxter equation, graphs and computations
We extend our recent work on set-theoretic solutions of the YangBaxter or braid relations with new results about their automorphism groups, strong twisted unions of solutions and multipermutation solutions. We introduce and study graphs of solutions and use our graphical methods for the computation of solutions of finite order and their automorphisms. Results include a detailed study of solutio...
متن کاملA Combinatorial Approach to the Set-theoretic Solutions of the Yang-baxter Equation
A bijective map r : X −→ X, where X = {x1, · · · , xn} is a finite set, is called a set-theoretic solution of the Yang-Baxter equation (YBE) if the braid relation r12r23r12 = r23r12r23 holds in X. A non-degenerate involutive solution (X, r) satisfying r(xx) = xx, for all x ∈ X, is called squarefree solution. There exist close relations between the square-free set-theoretic solutions of YBE, the...
متن کاملInvolutive Yang-baxter Groups
In 1992 Drinfeld posed the question of finding the set-theoretic solutions of the Yang-Baxter equation. Recently, Gateva-Ivanova and Van den Bergh and Etingof, Schedler and Soloviev have shown a group-theoretical interpretation of involutive non-degenerate solutions. Namely, there is a oneto-one correspondence between involutive non-degenerate solutions on finite sets and groups of I-type. A gr...
متن کاملSet-theoretic solutions of the Yang-Baxter equation, RC-calculus, and Garside germs
Building on a result by W.Rump, we show how to exploit the right-cyclic law (xy)(xz) = (yx)(yz) in order to investigate the structure groups and monoids attached with (involutive nondegenerate) set-theoretic solutions of the Yang–Baxter equation. We develop a sort of right-cyclic calculus, and use it to obtain short proofs for the existence both of the Garside structure and of the I-structure o...
متن کامل