On the ADI method for the Sylvester Equation and the optimal-$\mathcal{H}_2$ points

نویسندگان

  • Garret M. Flagg
  • Serkan Gugercin
چکیده

The ADI iteration is closely related to the rational Krylov projection methods for constructing low rank approximations to the solution of Sylvester equation. In this paper we show that the ADI and rational Krylov approximations are in fact equivalent when a special choice of shifts are employed in both methods. We will call these shifts pseudo H2-optimal shifts. These shifts are also optimal in the sense that for the Lyapunov equation, they yield a residual which is orthogonal to the rational Krylov projection subspace. Via several examples, we show that the pseudo H2-optimal shifts consistently yield nearly optimal low rank approximations to the solutions of the Lyapunov equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the ADI method for the Sylvester Equation and the optimal-H2 points

The ADI iteration is closely related to the rational Krylov projection methods for constructing low rank approximations to the solution of Sylvester equation. In this paper we show that the ADI and rational Krylov approximations are in fact equivalent when a special choice of shifts are employed in both methods. We will call these shifts pseudo H2-optimal shifts. These shifts are also optimal i...

متن کامل

On Baer type criterion for $C$-dense‎, ‎$C$-closed and quasi injectivity

‎For the subclasses $mathcal{M}_1$ and $mathcal{M}_2$ of‎ ‎monomorphisms in a concrete category $mathcal{C}$‎, ‎if $mathcal‎{M}_2subseteq mathcal{M}_1$‎, ‎then $mathcal{M}_1$-injectivity‎ ‎implies $mathcal{M}_2$-injectivity‎. ‎The Baer type criterion is about‎ ‎the converse of this fact‎. ‎In this paper‎, ‎we apply injectivity to the classes of $C$-dense‎, ‎$C$-closed‎ ‎monomorphisms‎. ‎The con...

متن کامل

Global conjugate gradient method for solving large general Sylvester matrix equation

In this paper, an iterative method is proposed for solving large general Sylvester matrix equation $AXB+CXD = E$, where $A in R^{ntimes n}$ , $C in R^{ntimes n}$ , $B in R^{stimes s}$ and  $D in R^{stimes s}$ are given matrices and $X in R^{stimes s}$  is the unknown matrix. We present a global conjugate gradient (GL-CG) algo- rithm for solving linear system of equations with multiple right-han...

متن کامل

ABS METHOD FOR SOLVING FUZZY SYLVESTER MATRIX EQUATION

The main aim of this paper intends to discuss the solution of fuzzy Sylvester matrix equation  

متن کامل

A Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation

Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1201.4779  شماره 

صفحات  -

تاریخ انتشار 2012