The isovolumic relaxation to early rapid filling relation: kinematic model based prediction with in vivo validation
نویسندگان
چکیده
Abstract Although catheterization is the gold standard, Doppler echocardiography is the preferred diastolic function (DF) characterization method. The physiology of diastole requires continuity of left ventricular pressure (LVP)-generating forces before and after mitral valve opening (MVO). Correlations between isovolumic relaxation (IVR) indexes such as tau (time-constant of IVR) and noninvasive, Doppler E-wave-derived metrics, such as peak A-V gradient or deceleration time (DT), have been established. However, what has been missing is the model-predicted causal link that connects isovolumic relaxation (IVR) to suction-initiated filling (E-wave). The physiology requires that model-predicted terminal force of IVR (Ft IVR) and model-predicted initial force of early rapid filling (Fi E-wave) after MVO be correlated. For validation, simultaneous (conductance catheter) P-V and E-wave data from 20 subjects (mean age 57 years, 13 men) having normal LV ejection fraction (LVEF>50%) and a physiologic range of LV end-diastolic pressure (LVEDP) were analyzed. For each cardiac cycle, the previously validated kinematic (Chung) model for isovolumic pressure decay and the Parametrized Diastolic Filling (PDF) kinematic model for the subsequent E-wave provided Ft IVR and Fi E-wave respectively. For all 20 subjects (15 beats/subject, 308 beats), linear regression yielded Ft IVR = α Fi E-wave + b (R = 0.80), where α = 1.62 and b = 1.32. We conclude that model-based analysis of IVR and of the E-wave elucidates DF mechanisms common to both. The observed in vivo relationship provides novel insight into diastole itself and the model-based causal mechanistic relationship that couples IVR to early rapid filling.
منابع مشابه
Isovolumic pressure-to-early rapid filling decay rate relation: model-based derivation and validation via simultaneous catheterization echocardiography.
Transmitral Doppler echocardiography is the preferred method of noninvasive diastolic function assessment. Correlations between catheterization-based measures of isovolumic relaxation (IVR) and transmitral, early rapid filling (Doppler E-wave)-derived parameters have been observed, but no model-based, causal explanation has been offered. IVR has also been characterized in terms of its duration ...
متن کاملPostextrasystolic left ventricular isovolumic pressure decay is not monoexponential.
OBJECTIVE The relationship between the left ventricular (LV) relaxation time constant and early diastolic filling is not fully defined. This study provides additional evidence that LV isovolumic pressure fall in the normal intact heart in response to certain interventions is not adequately described by a model of monoexponential decay and that its relationship to filling is complex. METHODS A...
متن کاملExperimental Study of the so Called Left Ventricular Isovolumic Relaxation Phase
Received July 15, 2008. Accepted for publication January 14, 2009. Introduction and objectives. Left ventricular filling begins in the ventricular isovolumic relaxation phase. According to the Torrent-Guasp myocardial band theory, this phase results from the contraction of the final portion of the myocardial band: the ascending segment of the apical loop. The objectives were to study the myocar...
متن کاملExperimental study of the so called left ventricular isovolumic relaxation phase.
INTRODUCTION AND OBJECTIVES Left ventricular filling begins in the ventricular isovolumic relaxation phase. According to the Torrent-Guasp myocardial band theory, this phase results from the contraction of the final portion of the myocardial band: the ascending segment of the apical loop. The objectives were to study the myocardial mechanisms influencing transmitral flow during early diastole a...
متن کاملRelation of left ventricular isovolumic relaxation time and incoordination to transmitral Doppler filling patterns.
OBJECTIVE To investigate factors during isovolumic relaxation that determine Doppler filling patterns in patients with left ventricular disease, and thus to identify the underlying mechanisms. DESIGN 85 patients (50 ischaemic heart disease, 35 left ventricular hypertrophy due to aortic stenosis) and 26 controls were studied with Doppler and M mode echocardiography and phonocardiography. 16 pa...
متن کامل