The Separation Theorem for Differential Interaction Nets
نویسندگان
چکیده
Differential interaction nets (DIN) have been introduced by Thomas Ehrhard and Laurent Regnier as an extension of linear logic proof-nets. We prove that DIN enjoy an internal separation property: given two different normal nets, there exists a dual net separating them, in analogy with Böhm’s theorem for the λ-calculus. Our result implies in particular the faithfulness of every non-trivial denotational model of DIN (such as Ehrhard’s finiteness spaces). We also observe that internal separation does not hold for linear logic proof-nets: our work points out that this failure is due to the fundamental asymmetry of linear logic exponential modalities, which are instead completely symmetric in DIN.
منابع مشابه
A Hierarchy of Expressiveness in Concurrent Interaction Nets
We give separation results, in terms of expressiveness, concerning all the concurrent extensions of interaction nets defined so far in the literature: we prove that multirule interaction nets (of which Ehrhard and Regnier’s differential interaction nets are a special case) are strictly less expressive than multiwire interaction nets (which include Beffara and Maurel’s concurrent nets and Honda ...
متن کاملObservational Equivalence for the Interaction Combinators and Internal Separation
We define an observational equivalence for Lafont’s interaction combinators, which we prove to be the least discriminating non-trivial congruence on total nets (nets admitting a deadlock-free normal form) respecting reduction. More interestingly, this equivalence enjoys an internal separation property similar to that of Böhm’s Theorem for the λ-calculus.
متن کاملThe Cut-Elimination Theorem for Differential Nets with Promotion
Recently Ehrhard and Regnier have introduced Differential Linear Logic, DiLL for short — an extension of the Multiplicative Exponential fragment of Linear Logic that is able to express non-deterministic computations. The authors have examined the cut-elimination of the promotion-free fragment of DiLL by means of a proofnet-like calculus: differential interaction nets. We extend this analysis to...
متن کاملNETS AND SEPARATED S-POSETS
Nets, useful topological tools, used to generalize certainconcepts that may only be general enough in the context of metricspaces. In this work we introduce this concept in an $S$-poset, aposet with an action of a posemigroup $S$ on it whichis a very useful structure in computer sciences and interestingfor mathematicians, and give the the concept of $S$-net. Using $S$-nets and itsconvergency we...
متن کاملRandom differential inequalities and comparison principles for nonlinear hybrid random differential equations
In this paper, some basic results concerning strict, nonstrict inequalities, local existence theorem and differential inequalities have been proved for an IVP of first order hybrid random differential equations with the linear perturbation of second type. A comparison theorem is proved and applied to prove the uniqueness of random solution for the considered perturbed random differential eq...
متن کامل