Smooth Approximation l 0-Norm Constrained Affine Projection Algorithm and Its Applications in Sparse Channel Estimation

نویسندگان

  • Yingsong Li
  • Masanori Hamamura
چکیده

We propose a smooth approximation l(0)-norm constrained affine projection algorithm (SL0-APA) to improve the convergence speed and the steady-state error of affine projection algorithm (APA) for sparse channel estimation. The proposed algorithm ensures improved performance in terms of the convergence speed and the steady-state error via the combination of a smooth approximation l(0)-norm (SL0) penalty on the coefficients into the standard APA cost function, which gives rise to a zero attractor that promotes the sparsity of the channel taps in the channel estimation and hence accelerates the convergence speed and reduces the steady-state error when the channel is sparse. The simulation results demonstrate that our proposed SL0-APA is superior to the standard APA and its sparsity-aware algorithms in terms of both the convergence speed and the steady-state behavior in a designated sparse channel. Furthermore, SL0-APA is shown to have smaller steady-state error than the previously proposed sparsity-aware algorithms when the number of nonzero taps in the sparse channel increases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L0 Norm Based Affine Projection Sign Algorithm for Sparse Underwater Acoustic Channel Estimation under Symmetric Α-stable Noise

A new framework is proposed for deriving adaptive algorithms for sparse channel estimation under the presence of Symmetric α-Stable (SαS) noise. The algorithmic framework employs the natural gradient and incorporates both the Lp norm of the channel prediction error and the L0 norm of the complex-valued channel taps. Based on this framework, a novel affine projection sign algorithm is derived an...

متن کامل

An Improved Proportionate Normalized Least-Mean-Square Algorithm for Broadband Multipath Channel Estimation

To make use of the sparsity property of broadband multipath wireless communication channels, we mathematically propose an l p -norm-constrained proportionate normalized least-mean-square (LP-PNLMS) sparse channel estimation algorithm. A general l p -norm is weighted by the gain matrix and is incorporated into the cost function of the proportionate normalized least-mean-square (PNLMS) algorithm....

متن کامل

Collect at Once, Use Effectively: Making Non-interactive Locally Private Learning Possible

Non-interactive Local Differential Privacy (LDP) requires data analysts to collect data from users through noisy channel at once. In this paper, we extend the frontiers of Non-interactive LDP learning and estimation from several aspects. For learning with smooth generalized linear losses, we propose an approximate stochastic gradient oracle estimated from non-interactive LDP channel using Cheby...

متن کامل

Efficient Euclidean Projections onto the Intersection of Norm Balls

Using sparse-inducing norms to learn robust models has received increasing attention from many fields for its attractive properties. Projection-based methods have been widely applied to learning tasks constrained by such norms. As a key building block of these methods, an efficient operator for Euclidean projection onto the intersection of l1 and l1,q norm balls (q = 2 or ∞) is proposed in this...

متن کامل

Least Mean Square Algorithm with Application to Improved Adaptive Sparse Channel Estimation

Least mean square (LMS) based adaptive algorithms have been attracted much attention since their low computational complexity and robust recovery capability. To exploit the channel sparsity, LMS-based adaptive sparse channel estimation methods, e.g., L1-norm LMS or zero-attracting LMS (sparse LMS or ZA-LMS), reweighted zero attracting LMS (RZA-LMS) and Lp-norm LMS (LP-LMS), have been proposed b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014