Redox-dependent toxicity of diepoxybutane and mitomycin C in sea urchin embryogenesis.
نویسندگان
چکیده
The effects and mechanisms of action of diepoxybutane (DEB) and mitomycin C (MMC) were investigated on sea urchin embryogenesis, (Sphaerechinus granularis and Paracentrotus lividus). DEB- and MMC-induced toxicity was evaluated by means of selected end-points, including developmental defects, cytogenetic abnormalities and alterations in the redox status [oxygen-dependent toxicity, Mn-superoxide dismutase (MnSOD) and catalase activities and glutathione (GSH) levels]. Both DEB and MMC exhibited developmental toxicity (at concentrations ranging from 3 x 10(-5) to 3 x 10(-4) M and 3 x 10(-6) to 3 x 10(-5) M, respectively) expressed as larval abnormalities, developmental arrest and mortality. The developmental effects of both compounds were significantly affected by oxygen at levels ranging from 5 to 40%. These results confirmed previous evidence for oxygen-dependent MMC toxicity and are the first report of oxygen dependence for DEB toxicity. Both DEB and MMC exerted significant cytogenetic abnormalities, including mitotoxicity and mitotic aberrations, but with different trends between the two chemicals, at the same concentrations as exerted developmental toxicity. The formation of reactive oxygen species was evaluated using: (i) luminol-dependent chemiluminescence (LDCL); (ii) reactions of the main antioxidant systems, such as GSH content and MnSOD and catalase activities. The results point to clear-cut differences in the effects induced by DEB and MMC. Thus, DEB suppressed GSH content within the concentration range 10(-7)-3 x 10(-5) M. The activity of catalase was stimulated at lower DEB levels (10(-7)-10(-6) M) and then decreased at higher DEB concentrations (> or =10(-5) M). Increasing MMC concentrations induced LDCL and MnSOD activity (> or =10(-6) M) greatly and modulated catalase activity (10(-7) - 10(-6) M). GSH levels were unaffected by MMC. The results suggest that oxidative stress contributes to the developmental and genotoxic effects of both toxins studied, although through different mechanisms.
منابع مشابه
Determination of developmental stages of embryo in the Sea Urchin, Echinometra mathaei
Sea Urchin is one of the most useful tools in developmental biology studies because this organism has the simplest kind of developmental stages. We aimed to determine developmental stages and timetable of Echinometra mathaei embryo (the species of Persian Gulf). The spawning of E. mathaei was induced by 0.5M KCl injection (1ml) into the coelomic cavity. After fertilization, embryos were placed ...
متن کاملEffects of mercury on embryonic development and larval growth of the sea urchin Echinometra mathaei from the Persian Gulf
This study investigated the effects of increasing mercury (Hg) concentration on early developmental stages of sea urchin, Echinomethra mathaei, as a bioindicator. The toxicity test was carried out after the gamete released induction and fertilization in six concentrations of mercury within the range of 4, 8, 16, 32, 64 and 128 µg/L. Embryos samples were incubated for 30 h in control and test so...
متن کاملToxicity evaluation of single and mixed antifouling biocides using the Strongylocentrotus intermedius sea urchin embryo test.
The present study evaluated the single and mixed toxicities of commonly used antifouling biocides (copper pyrithione, Sea nine 211, dichlofluanid, tolylfluanid, and Irgarol 1051) on the early embryogenesis of sea urchin Strongylocentrotus intermedius. Their toxicities were quantified in terms of the median effective concentration (EC50) reducing the embryogenesis success by 50%. For individual ...
متن کاملToxicity of four spill-treating agents on bacterial growth and sea urchin embryogenesis.
The toxicity of spill-treating agents (STAs) is a topic that needs to be assessed prior to their potential application in environmental disasters. The aim of the present work was to study the effects of four commercial STAs (CytoSol, Finasol OSR 51, Agma OSD 569 and OD4000) on the growth of marine (Phaeobacter sp., Pseudomonas sp.) and terrestrial (Leuconostoc mesenteroides) bacteria, and sea u...
متن کاملOxidative stress-related mechanisms are associated with xenobiotics exerting excess toxicity to Fanconi anemia cells.
An extensive body of evidence has demonstrated the sensitivity of Fanconi anemia (FA) cells to redox-active xenobiotics, such as mitomycin C, diepoxybutane, cisplatin, and 8-methoxypsoralen plus ultraviolet irradiation, with toxicity mechanisms that are consistent with a deficiency of FA cells in coping with oxidative stress. A recent study has reported on excess sensitivity of FA complementati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Carcinogenesis
دوره 21 2 شماره
صفحات -
تاریخ انتشار 2000