Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals.

نویسندگان

  • Araceli M Huerta
  • Julio Collado-Vides
چکیده

We present here a computational analysis showing that sigma70 house-keeping promoters are located within zones with high densities of promoter-like signals in Escherichia coli, and we introduce strategies that allow for the correct computer prediction of sigma70 promoters. Based on 599 experimentally verified promoters of E.coli K-12, we generated and evaluated more than 200 weight matrices optimizing different criteria to obtain the best recognition matrices. The alignments generating the best statistical models did not fully correspond with the canonical sigma70 model. However, matrices that correspond to such a canonical model performed better as tools for prediction. We tested the predictive capacity of these matrices on 250 bp long regions upstream of gene starts, where 90% of the known promoters occur. The computational matrix models generated an average of 38 promoter-like signals within each 250 bp region. In more than 50% of the cases, the true promoter does not have the best score within the region. We observed, in fact, that real promoters occur mostly within regions with high densities of overlapping putative promoters. We evaluated several strategies to identify promoters. The best one uses an intrinsic score of the -10 and -35 hexamers that form the promoter as well as an extrinsic score that uses the distribution of promoters from the start of the gene. We were able to identify 86% true promoters correctly, generating an average of 4.7 putative promoters per region as output, of which 3.7, on average, exist in clusters, as a series of overlapping potentially competing RNA polymerase-binding sites. As far as we know, this is the highest predictive capability reported so far. This high signal density is found mainly within regions upstream of genes, contrasting with coding regions and regions located between convergently transcribed genes. These results are consistent with experimental evidence that show the existence of multiple overlapping promoter sites that become functional under particular conditions. This density is probably the consequence of a rich number of vestiges of promoters in evolution. We suggest that transcriptional regulators as well as other functional promoters play an important role in keeping these latent signals suppressed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting.

We perform a genome-wide analysis of the transition between transcriptional initiation and elongation in Escherichia coli by determining the association of core RNA polymerase (RNAP) and the promoter-recognition factor sigma70 with respect to RNA transcripts. We identify 1286 sigma70-associated promoters, including many internal to known operons, and demonstrate that sigma70 is usually released...

متن کامل

Promoter selectivity of Escherichia coli RNA polymerase sigmaF holoenzyme involved in transcription of flagellar and chemotaxis genes.

The rpoF gene of Escherichia coli codes for the RNA polymerase sigmaF (or sigma28) subunit, which is involved in transcription of the flagellar and chemotaxis genes. Both sigmaF and sigma70 (the major sigma subunit in growing cells) were overexpressed, purified to homogeneity, and compared with respect to activity and specificity. The affinity of sigmaF to core RNA polymerase (E) is higher than...

متن کامل

Modeling DNA-binding of Escherichia coli σ70 exhibits a characteristic energy landscape around strong promoters

We present a computational model of DNA-binding by sigma70 in Escherichia coli which allows us to extract the functional characteristics of the wider promoter environment. Our model is based on a measure for the binding energy of sigma70 to the DNA, which is derived from promoter strength data and used to build up a non-standard weight matrix. Opposed to conventional approaches, we apply the ma...

متن کامل

The role of an upstream promoter interaction in initiation of bacterial transcription.

The bacterial RNA polymerase (RNAP) recognizes promoters through sequence-specific contacts of its promoter-specificity components (sigma) with two DNA sequence motifs. Contacts with the upstream ('-35') promoter motif are made by sigma domain 4 attached to the flap domain of the RNAP beta subunit. Bacteriophage T4 late promoters consist solely of an extended downstream ('-10') motif specifical...

متن کامل

Transcriptional organization and in vivo role of the Escherichia coli rsd gene, encoding the regulator of RNA polymerase sigma D.

The regulator of sigma D (Rsd) was identified as an RNA polymerase sigma70-associated protein in stationary-phase Escherichia coli with the inhibitory activity of sigma70-dependent transcription in vitro (M. Jishage and A. Ishihama, Proc. Natl. Acad. Sci. USA 95:4953-4958, 1998). Primer extension analysis of rsd mRNA indicated the presence of two promoters, sigmaS-dependent P1 and sigma70-depen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 333 2  شماره 

صفحات  -

تاریخ انتشار 2003