Photon pencil kernel parameterisation based on beam quality index.

نویسندگان

  • Tufve Nyholm
  • Jörgen Olofsson
  • Anders Ahnesjö
  • Mikael Karlsson
چکیده

BACKGROUND AND PURPOSE New treatment techniques in radiotherapy employ increasing dose calculation complexity in treatment planning. For an adequate check of the results coming from a modern treatment planning system, clinical tools with almost the same degree of generality and accuracy as the planning system itself are needed. To fulfil this need we propose a photon pencil kernel parameterization based on a minimum of input data that can be used for phantom scatter calculations. Through scatter integration the pencil kernel model can calculate common parameters, such as TPR or phantom scatter factors, used in various dosimetric QA (quality assurance) procedures. MATERIAL AND METHODS The proposed model originates from an already published radially parameterized pencil kernel. A depth parameterization of the pencil kernel parameters has been introduced, based on a large database containing commissioned beam data for a commercial treatment planning system. The entire pencil kernel model demands only one photon beam quality index, TPR20,10, as input. RESULTS By comparing the dose calculation results to the extensive experimental data set in the database, it has been possible to make a thorough analysis of the resulting accuracy. The errors in calculated doses, normalized to the reference geometry, are in most cases smaller than 2%. CONCLUSIONS The investigation shows that a pencil kernel model based only on TPR20,10 can be used for dosimetric verification purposes in megavoltage photon beams at depths below the range of contaminating electrons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intensity modulated dose calculation with an improved experimental pencil-beam kernel.

PURPOSE This article presents an improved pencil-beam dose calculation formalism based on an experimental kernel obtained by deconvolution. The new algorithm makes it possible to calculate the absorbed dose for all field sizes. METHODS The authors have enhanced their previous work [J. D. Azcona and J. Burguete, Med. Phys. 35, 248-259 (2008)] by correcting the kernel tail representing the cont...

متن کامل

A system for intensity modulated dose plan verification based on an experimental pencil beam kernel obtained by deconvolution.

The number of intensity modulated radiation therapy (IMRT) procedures is continuously growing worldwide and it is necessary to develop tools for patient specific quality assurance (QA) that avoid using machine time that could be employed in treating additional patients. One way of achieving this goal is to perform a multileaf collimator quality assurance periodically in the linear accelerator a...

متن کامل

Evaluation of uncertainty predictions and dose output for model-based dose calculations for megavoltage photon beams.

In many radiotherapy clinics an independent verification of the number of monitor units (MU) used to deliver the prescribed dose to the target volume is performed prior to the treatment start. Traditionally this has been done by using methods mainly based on empirical factors which, at least to some extent, try to separate the influence from input parameters such as field size, depth, distance,...

متن کامل

Medium-Term Stability of the Photon Beam Energy of An Elekta CompactTM Linear Accelerator Based on Daily Measurements of Beam Quality Factor

Introduction In this study, we aimed to assess the medium-term energy stability of a 6MV Elekta CompactTM linear accelerator. To the best of our knowledge, this is the first published article to evaluate this linear accelerator in terms of energy stability. As well as investigating the stability of the linear accelerator energy over a period of several weeks, the results will be useful for esti...

متن کامل

Clinical Comparison of Pencil Beam Convolution and Clarkson Algorithms for Dose Calculation

Purpose: The purpose of this work is to study and quantify the differences in calculated dose computed with two algorithms available in treatment planning systems: Pencil Beam Convolution and Clarkson. Material and Methods: Four different types of treatment cases were analyzed: lung, head and neck, brain and prostate. For each case, the volume definition was based on a clinical CT-scan acquisit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology

دوره 78 3  شماره 

صفحات  -

تاریخ انتشار 2006