Origami-Based Reconfigurable Metamaterials for Tunable Chirality.

نویسندگان

  • Zuojia Wang
  • Liqiao Jing
  • Kan Yao
  • Yihao Yang
  • Bin Zheng
  • Costas M Soukoulis
  • Hongsheng Chen
  • Yongmin Liu
چکیده

Origami is the art of folding two-dimensional (2D) materials, such as a flat sheet of paper, into complex and elaborate three-dimensional (3D) objects. This study reports origami-based metamaterials whose electromagnetic responses are dynamically controllable via switching the folding state of Miura-ori split-ring resonators. The deformation of the Miura-ori unit along the third dimension induces net electric and magnetic dipoles of split-ring resonators parallel or anti-parallel to each other, leading to the strong chiral responses. Circular dichroism as high as 0.6 is experimentally observed while the chirality switching is realized by controlling the deformation direction and kinematics. In addition, the relative density of the origami metamaterials can be dramatically reduced to only 2% of that of the unfolded structure. These results open a new avenue toward lightweight, reconfigurable, and deployable metadevices with simultaneously customized electromagnetic and mechanical properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconfigurable origami-inspired acoustic waveguides

We combine numerical simulations and experiments to design a new class of reconfigurable waveguides based on three-dimensional origami-inspired metamaterials. Our strategy builds on the fact that the rigid plates and hinges forming these structures define networks of tubes that can be easily reconfigured. As such, they provide an ideal platform to actively control and redirect the propagation o...

متن کامل

Micromachined tunable metamaterials: a review

This paper reviews micromachined tunable metamaterials, whereby the tuning capabilities are based on the mechanical reconfiguration of the lattice and/or the metamaterial element geometry. The primary focus of this review is the feasibility of the realization of micromachined tunable metamaterials via structure reconfiguration and the current state of the art in the fabrication technologies of ...

متن کامل

Reentrant Origami-Based Metamaterials with Negative Poisson's Ratio and Bistability.

We investigate the unique mechanical properties of reentrant 3D origami structures based on the Tachi-Miura polyhedron (TMP). We explore the potential usage as mechanical metamaterials that exhibit tunable negative Poisson's ratio and structural bistability simultaneously. We show analytically and experimentally that the Poisson's ratio changes from positive to negative and vice versa during it...

متن کامل

Origami Metamaterials for Tunable Thermal Expansion.

Materials with engineered thermal expansion, capable of achieving targeted area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with engineered coefficient of thermal expansion consist of bi-material 2D or 3D lattices, here it is shown that origami metamater...

متن کامل

Broadband electromagnetic metamaterials with reconfigurable fluid channels

We present the design, characterization, and experimental verification of broadband and tunable metamaterials based on reconfigurable fluid channels. We demonstrate through simulation that a finite-height cylinder of water in a background medium behaves as a nonresonant metamaterial. By changing liquid type or adjusting liquid level, we tune the effective material parameters of the metamaterial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advanced materials

دوره 29 27  شماره 

صفحات  -

تاریخ انتشار 2017