Touching Triangle Representation for 3-Connected Planar Graphs

نویسندگان

  • Stephen G. Kobourov
  • Debajyoti Mondal
  • Rahnuma Islam Nishat
چکیده

A touching triangle graph representation (TTG) of a planar graph is a planar drawing Γ of the graph, where each vertex is represented as a triangle and each edge e is represented as a side contact of the triangles that correspond to the endvertices of e. We call Γ a proper TTG if Γ determines a tiling of a triangle, where each tile corresponds to a distinct vertex of the input graph. In this paper we prove that every 3-connected cubic planar graph admits a proper TTG. We also construct proper TTG for parabolic grid graphs and the graphs determined by rectangular grid drawings (e.g., square grid graphs). Finally, we describe a fixed-parameter tractable decision algorithm for testing whether a 3connected planar graph admits a proper TTG.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Touching Triangle Representations for 3-Connected Planar Graphs

A touching triangle graph (TTG) representation of a planar graph is a planar drawing Γ of the graph, where each vertex is represented as a triangle and each edge e is represented as a side contact of the triangles that correspond to the end vertices of e. We call Γ a proper TTG representation if Γ determines a tiling of a triangle, where each tile corresponds to a distinct vertex of the input g...

متن کامل

Gallai's path decomposition conjecture for triangle-free planar graphs

A path decomposition of a graph G is a collection of edge-disjoint paths of G that covers the edge set of G. Gallai (1968) conjectured that every connected graph on n vertices admits a path decomposition of cardinality at most ⌊(n + 1)/2⌋. Gallai’s Conjecture has been verified for many classes of graphs. In particular, Lovász (1968) verified this conjecture for graphs with at most one vertex wi...

متن کامل

Homothetic Triangle Contact Representations of Planar Graphs

In this paper we study the problem of computing homothetic triangle contact representations of planar graphs. Since not all planar graphs admit such a representation, we concentrate on meaningful subfamilies of planar graphs and prove that: (i) every two-terminal seriesparallel digraph has a homothetic triangle contact representation, which can be computed in linear time; (ii) every partial pla...

متن کامل

Circle-Representations of Simple 4-Regular Planar Graphs

Lovász conjectured that every connected 4-regular planar graph G admits a realization as a system of circles, i.e., it can be drawn on the plane utilizing a set of circles, such that the vertices of G correspond to the intersection and touching points of the circles and the edges of G are the arc segments among pairs of intersection and touching points of the circles. In this paper, (a) we affi...

متن کامل

Another Characterization of Straight Line Triangle Representations

A straight line triangle representation (SLTR) of a planar graph is a straight line drawing such that all the faces including the outer face are triangles. Such a drawing can be viewed as a tessellation of a triangle with triangles where the input graph is the skeletal structure. A characterization based on flat angle assignments, i.e., selections of angles of the graph that are of size π in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012