Improved multimodal methods for the acoustic propagation in waveguides with finite wall impedance

نویسندگان

  • Simon Félix
  • Agnès Maurel
  • Jean-François Mercier
چکیده

We address the problem of acoustic propagation in waveguides with wall impedance, or Robin, boundary condition. Two improved multimodal methods are developed to remedy the problem of the low convergence of the series in the standard modal approach. In the first improved method, the series is enriched with an additional mode, which is thought to be able to restore the right boundary condition. The second improved method consists in a reformulation of the expansions able to restore the right boundary conditions for any truncation, similar to polynomial subtraction technique. Surprisingly, the first improved method is found to be the most efficient. Notably, the convergence of the scattering properties is increased fromN 1 in the standardmodalmethod toN 3 in the reformulation and N 5 in the formulation with a supplementary mode. The improved methods are shown to be of particular interest when surface waves are generated near the impedance wall. © 2014 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of propagation of acoustic-gravity waves in the atmosphere using finite difference method of order two

Investigating waves propagation’s equation in the atmosphere is one of the important and widely used issues in various sciences, which has attracted many researchers. A type of propagating waves is an acoustic-gravity wave. These type of waves have a lot of stationarity properties and can be propagate to a high altitude in the atmosphere. The equation of acoustic-gravity wave propagation is a h...

متن کامل

An improved multimodal method for sound propagation in nonuniform lined ducts.

An efficient method is proposed for modeling time harmonic acoustic propagation in a nonuniform lined duct without flow. The lining impedance is axially segmented uniform, but varies circumferentially. The sound pressure is expanded in term of rigid duct modes and an additional function that carries the information about the impedance boundary. The rigid duct modes and the additional function a...

متن کامل

Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.

An accurate and practical surface impedance boundary condition in the time domain has been developed for application to broadband-frequency simulation in aeroacoustic problems. To show the capability of this method, two kinds of numerical simulations are performed and compared with the analytical/experimental results: one is acoustic wave reflection by a monopole source over an impedance surfac...

متن کامل

Elastic wave propagation along waveguides in three-dimensional phononic crystals

We investigate theoretically using the finite difference time domain method acoustic wave propagation along waveguides in three-dimensional phononic crystals constituted of lead spherical inclusions on a face-centered cubic lattice embedded in an epoxy matrix. The transmission spectra of the perfect phononic crystal for transverse and longitudinal acoustic waves are shown to depend strongly on ...

متن کامل

Effects of wall impedance on transmission and attenuation of higher-order modes in vocal-tract model

This paper presents the effects of a wall impedance on the propagation of higher-order modes in a three-dimensional vocal-tract model. This model is constructed using an asymmetrically connected structure of rectangular acoustic tubes, and can parametrically represent acoustic characteristics in higher frequencies where the assumption of the plane wave propagation does not hold. The propagation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015