Immunohistochemical colocalization of TREK-1, TREK-2 and TRAAK with TRP channels in the trigeminal ganglion cells.

نویسندگان

  • Yoshio Yamamoto
  • Taku Hatakeyama
  • Kazuyuki Taniguchi
چکیده

TREK belongs to a subfamily of tandem pore domain K+ channels, and consists of three subunits, TREK-1, TREK-2 and TRAAK. We examined the distribution of TREK-1, TREK-2 and TRAAK immunoreactive neurons in rat trigeminal sensory neurons. In the trigeminal ganglia, 31%, 43% and 60% of neurons were immunoreactive for TREK-1, TREK-2 and TRAAK, respectively. Mean sizes of TREK-1, TREK-2 and TRAAK immunoreactive trigeminal ganglion neurons were 447+/-185, 445+/-23 and 492+/-12 mm2, respectively. Furthermore, TREK channels were colocalized with cationic TRP channels, TRPV1, TRPV2 and TRPM8. TREK-1 immunoreactive neurons were colocalized with TRPV1 (57%), TRPV2 (11%) and TRPM8 (33%). TREK-2-immunoreactive neurons were colocalized with TRPV1 (33%), TRPV2 (9%) and TRPM8 (19%). TRAAK immunoreactive neurons were colocalized with TRPV1 (47%), TRPV2 (10%) and TRPM8 (22%). The present results revealed that TREK-1, TREK-2 and TRAAK channels colocalized with thermosensitive TRP channels in some small trigeminal ganglion neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception.

The sensation of cold or heat depends on the activation of specific nerve endings in the skin. This involves heat- and cold-sensitive excitatory transient receptor potential (TRP) channels. However, we show here that the mechano-gated and highly temperature-sensitive potassium channels of the TREK/TRAAK family, which normally work as silencers of the excitatory channels, are also implicated. Th...

متن کامل

Colitis decreases mechanosensitive K2P channel expression and function in mouse colon sensory neurons.

TREK-1, TREK-2 and TRAAK are mechanosensitive two-pore domain K(+) (K(2P)) channels thought to be involved in the attenuation of mechanotransduction. Because colon inflammation is associated with colon mechanohypersensitivity, we hypothesized that the role of these channels in colon sensory (dorsal root ganglion, DRG) neurons would be reduced by colon inflammation. Accordingly, we studied the f...

متن کامل

Colitis decreases mechanosensitive K2P channel expression and function in mouse colon sensory neurons Abbreviated title: Mechanosensitive K2P channels in colon DRG neurons

TREK-1, TREK-2 and TRAAK are mechanosensitive two-pore domain K (K2P) channels thought to be involved in the attenuation of mechanotransduction. Because colon inflammation is associated with colon mechano-hypersensitivity, we hypothesized that the role of these channels in colon sensory (dorsal root ganglion, DRG) neurons would be reduced by colon inflammation. Accordingly, we studied the funct...

متن کامل

Activation of TREK currents by the neuroprotective agent riluzole in mouse sympathetic neurons.

Background K2P channels play a key role in stabilizing the resting membrane potential, thereby modulating cell excitability in the central and peripheral somatic nervous system. Whole-cell experiments revealed a riluzole-activated current (I(RIL)), transported by potassium, in mouse superior cervical ganglion (mSCG) neurons. The activation of this current by riluzole, linoleic acid, membrane st...

متن کامل

Temperature sensitivity of two-pore (K2P) potassium channels.

At normal body temperature, the two-pore potassium channels TREK-1 (K2P2.1/KCNK2), TREK-2 (K2P10.1/KCNK10), and TRAAK (K2P4.1/KCNK2) regulate cellular excitability by providing voltage-independent leak of potassium. Heat dramatically potentiates K2P channel activity and further affects excitation. This review focuses on the current understanding of the physiological role of heat-activated K2P c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience letters

دوره 454 2  شماره 

صفحات  -

تاریخ انتشار 2009