Random mutagenesis of yeast 25S rRNA identify bases critical for 60S subunit structural integrity and function

نویسندگان

  • Naoki Nemoto
  • Tsuyoshi Udagawa
  • Wasimul Chowdhury
  • Makoto Kitabatake
  • Byung-shik Shin
  • Hiroyuki Hiraishi
  • Suzhi Wang
  • Chingakham Ranjit Singh
  • Susan J. Brown
  • Mutsuhito Ohno
  • Katsura Asano
چکیده

In yeast Saccharomyces cerevisiae, 25S rRNA makes up the major mass and shape of the 60S ribosomal subunit. During translation initiation, the 60S subunit joins the 40S initiation complex, producing the 80S initiation complex. During elongation, the 60S subunit binds the CCA-ends of aminoacyl- and peptidyl-tRNAs at the A-loop and P-loop, respectively, transferring the peptide onto the α-amino group of the aminoacyl-tRNA. To study the role of 25S rRNA in translation in vivo, we randomly mutated 25S rRNA and isolated and characterized seven point mutations that affected yeast cell growth and polysome profiles. Four of these mutations, G651A, A1435U, A1446G and A1587G, change a base involved in base triples crucial for structural integrity. Three other mutations change bases near the ribosomal surface: C2879U and U2408C alter the A-loop and P-loop, respectively, and G1735A maps near a Eukarya-specific bridge to the 40S subunit. By polysome profiling in mmslΔ mutants defective in nonfunctional 25S rRNA decay, we show that some of these mutations are defective in both the initiation and elongation phases of translation. Of the mutants characterized, C2879U displays the strongest defect in translation initiation. The ribosome transit-time assay directly shows that this mutation is also defective in peptide elongation/termination. Thus, our genetic analysis not only identifies bases critical for structural integrity of the 60S subunit, but also suggests a role for bases near the peptidyl transferase center in translation initiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A cluster of methylations in the domain IV of 25S rRNA is required for ribosome stability.

In all three domains of life ribosomal RNAs are extensively modified at functionally important sites of the ribosome. These modifications are believed to fine-tune the ribosome structure for optimal translation. However, the precise mechanistic effect of modifications on ribosome function remains largely unknown. Here we show that a cluster of methylated nucleotides in domain IV of 25S rRNA is ...

متن کامل

The Saccharomyces cerevisiae TIF6 gene encoding translation initiation factor 6 is required for 60S ribosomal subunit biogenesis.

Eukaryotic translation initiation factor 6 (eIF6), a monomeric protein of about 26 kDa, can bind to the 60S ribosomal subunit and prevent its association with the 40S ribosomal subunit. In Saccharomyces cerevisiae, eIF6 is encoded by a single-copy essential gene. To understand the function of eIF6 in yeast cells, we constructed a conditional mutant haploid yeast strain in which a functional but...

متن کامل

Nop2p is required for pre-rRNA processing and 60S ribosome subunit synthesis in yeast.

To investigate the function of the nucleolar protein Nop2p in Saccharomyces cerevisiae, we constructed a strain in which NOP2 is under the control of a repressible promoter. Repression of NOP2 expression lengthens the doubling time of this strain about fivefold and reduces steady-state levels of 60S ribosomal subunits, 80S ribosomes, and polysomes. Levels of 40S subunits increase as the free po...

متن کامل

Characterization of the nuclear export adaptor protein Nmd3 in association with the 60S ribosomal subunit

The nucleocytoplasmic shuttling protein Nmd3 is an adaptor for export of the 60S ribosomal subunit from the nucleus. Nmd3 binds to nascent 60S subunits in the nucleus and recruits the export receptor Crm1 to facilitate passage through the nuclear pore complex. In this study, we present a cryoelectron microscopy (cryo-EM) reconstruction of the 60S subunit in complex with Nmd3 from Saccharomyces ...

متن کامل

Impairment of the Proteasome and Induction of Autophagy in Neurodegenerative Disease

The concept that the structure of the ribosome determines its function is simple. In practice, linking the two is not. Toward this general goal, we have undertaken an integrated approach employing the methods of molecular genetics, biochemistry, structural biology and molecular modeling in the model eukaryotic organism, Saccharomyces cerevisae. Both selected ribosomal proteins and rRNA residues...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2013