Beyond Consensus and Synchrony in Decentralized Online Optimization using Saddle Point Method

نویسندگان

  • Amrit Singh Bedi
  • Alec Koppel
  • Ketan Rajawat
چکیده

We consider online learning problems in multiagent systems comprised of distinct subsets of agents operating without a common time-scale. Each individual in the network is charged with minimizing the global regret, which is a sum of the instantaneous sub-optimality of each agent’s actions with respect to a fixed global clairvoyant actor with access to all costs across the network for all time up to a time-horizon T . Since agents are not assumed to be of the same type, the hypothesis that all agents seek a common action is violated, and thus we instead introduce a notion of network discrepancy as a measure of how well agents coordinate their behavior while retaining distinct local behavior. Moreover, agents are not assumed to receive the sequentially arriving costs on a common time index, and thus seek to learn in an asynchronous manner. A variant of the ArrowHurwicz saddle point algorithm is proposed to control the growth of global regret and network discrepancy. This algorithm uses Lagrange multipliers to penalize the discrepancies between agents and leads to an implementation that relies on local operations and exchange of variables between neighbors. Decisions made with this method lead to regret whose order is O( √ T ) and network discrepancy O(T ). Empirical evaluation is conducted on an asynchronously operating sensor network estimating a spatially correlated random field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized iterative methods for solving double saddle point problem

In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version  of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...

متن کامل

A Decentralized Consensus Algorithm via LMI-Based Model Predictive Control and Primal Decomposition

This paper proposes a decentralized model predictive control method for solving an optimal consensus problem, where a system consists of networked multiple subsystems and the states of all the subsystems converge to a common point. The problem is formulated as a convex optimization problem involving linear matrix inequalities, and then is solved by using an incremental subgradient method based ...

متن کامل

Distributed Output Consensus via Lmi-based Model Predictive Control and Dual Decomposition

This paper proposes a distributed model predictive control method for solving an optimal consensus problem, where a system consists of networked multiple agents and the outputs of all agents converge to a common point. The problem is formulated as a convex optimization problem involving linear matrix inequalities, and then solved by using dual decomposition. In the proposed scheme, the state fe...

متن کامل

A Decentralized Online Sortition Protocol

We propose a new online sortition protocol which is decentralized. We argue that our protocol has safety, fairness, randomness, non-reputation and openness properties. Sortition is a process that makes random decision and it is used in competitions and lotteries to determine who is the winner. In the real world, sortition is simply done using a lottery machine and all the participa...

متن کامل

SADDLE POINT VARIATIONAL METHOD FOR DIRAC CONFINEMENT

A saddle point variational (SPV ) method was applied to the Dirac equation as an example of a fully relativistic equation with both negative and positive energy solutions. The effect of the negative energy states was mitigated by maximizing the energy with respect to a relevant parameter while at the same time minimizing it with respect to another parameter in the wave function. The Cornell pot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017