A categorification of quantum sl(2)

نویسنده

  • Aaron D. Lauda
چکیده

We categorify Lusztig’s U̇ – a version of the quantized enveloping algebra Uq(sl2). Using a graphical calculus a 2-category U̇ is constructed whose split Grothendieck ring is isomorphic to the algebra U̇. The indecomposable morphisms of this 2-category lift Lusztig’s canonical basis, and the Homs between 1-morphisms are graded lifts of a semilinear form defined on U̇. Graded lifts of various homomorphisms and antihomomorphisms of U̇ arise naturally in the context of our graphical calculus. For each positive integer N a representation of U̇ is constructed using iterated flag varieties that categorifies the irreducible (N + 1)-dimensional representation of U̇.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

sl3-Foams and the Khovanov-Lauda categorification of quantum slk.

sl 3-Foams and the Khovanov-Lauda categorification of quantum sl k. Abstract In this paper I define certain interesting 2-functors from the Khovanov-Lauda 2-category which categorifies quantum sl k , for any k > 1, to a 2-category of universal sl 3 foams with corners. For want of a better name I use the term foamation to indicate those 2-functors. I conjecture the existence of similar 2-functor...

متن کامل

Categorification of the Jones-wenzl Projectors

The Jones-Wenzl projectors pn play a central role in quantum topology, underlying the construction of SU(2) topological quantum field theories and quantum spin networks. We construct chain complexes Pn , whose graded Euler characteristic is the “classical” projector pn in the Temperley-Lieb algebra. We show that the Pn are idempotents and uniquely defined up to homotopy. Our results fit within ...

متن کامل

POSITIVITY AND THE CANONICAL BASIS OF TENSOR PRODUCTS OF FINITE-DIMENSIONAL IRREDUCIBLE REPRESENTATIONS OF QUANTUM sl(k)

In a categorification of tensor products of fundamental representations of quantum sl(k) via highest weight categories, the indecomposable tilting modules descend to the canonical basis. Projective functors map tilting modules to tilting modules implying the coefficients of the canonical basis of tensor products of finite dimensional, irreducible representations under the action of the Chevalle...

متن کامل

Knot Homology via Derived Categories of Coherent Sheaves I, Sl(2) Case

Using derived categories of equivariant coherent sheaves, we construct a categorification of the tangle calculus associated to sl(2) and its standard representation. Our construction is related to that of Seidel-Smith by homological mirror symmetry. We show that the resulting doubly graded knot homology agrees with Khovanov homology.

متن کامل

Matrix Factorizations and Colored Moy Graphs

We assign matrix factorizations to colored MOY graphs, which gives a natural generalization of the graph homology defined by Khovanov and Rozansky in [8]. We also discuss some basic properties of this generalization. This work is a first step toward categorification of the colored MOY invariant, which is equivalent to quantum sl(N)-invariant for links whose components are colored by exterior pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008