Flexural stiffness and composition of the batoid propterygium as predictors of punting ability.

نویسندگان

  • Laura J Macesic
  • Adam P Summers
چکیده

Elasmobranchs (sharks, skates and rays) perform at the extremes of locomotion and feeding (i.e. long migrations, high-speed swimming and durophagy). However, very little is known about their cartilaginous skeletal structure and composition in response to loading regimes. In this study, we investigated a batoid (skate and ray) appendicular skeletal element, the propterygium, and its response to forces experienced during punting (benthic pelvic fin locomotion). Punting places a flexural load on this thin, rod-like element. The goals for our study were to determine: (1) the mechanical and compositional properties of the propterygium and (2) whether these properties correlate with punting ability. Using five batoid species of varying punting ability, we employed a three-point bending test and found that propterygium flexural stiffness (33.74-180.16 Nm(2)) was similar to values found in bone and could predict punting ability. Variation in flexural stiffness resulted from differences in mineral content (24.4-48.9% dry mass) and the second moment of area. Propterygia material stiffness (140-2533 MPa) approached the lower limit of bone despite having less than one-third of its mineral content. This drastically lower mineral content is reflected in the radius-to-thickness ratio of the cross-section (mean ± s.e.m.=5.5 ± 0.44), which is comparatively much higher than bony vertebrates. This indicates that elasmobranchs may have evolved skeletal elements that increase buoyancy without sacrificing mechanical properties. Our results highlight the functional parallels between a cartilaginous and bony skeleton despite dramatic compositional differences, and provide insight into how environmental factors may affect cartilaginous skeletal development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative punting kinematics and pelvic fin musculature of benthic batoids.

Although the majority of batoid elasmobranchs, skates and rays, are benthically associated, benthic locomotion has been largely overlooked in this group. Only skates have been previously described to perform a form of benthic locomotion termed "punting." While keeping the rest of the body motionless, the skate's pelvic fins are planted into the substrate and then retracted caudally, which thrus...

متن کامل

Effect of Flexural and Membrane Stiffness on the Analysis of Floating Roofs

With the aim of extending the use of integrated variational principles on fluid and deckplate to the large deflection analysis of floating roofs, this paper investigates the significance of theflexural and membrane components in the formulations of the deck plate. Applying integratedvariational principles on deck plate and fluid facilitate the treatment of the compatibility ofdeformation betwee...

متن کامل

Catch per unit area of Batoid fishes in the Northern Oman Sea

We report on results of a trawl survey to assess the abundance of Batoid fish resources in the Oman Sea. The catch per unit area CPUA as the main index was estimated. The objectives of this study were to determine the catch composition and distribution pattern of Batoid fishes in the study area and in different depth strata of the Oman Sea.A total of 82stations were randomly selected 2012. The ...

متن کامل

Study of the flexural sensitivity and resonant frequency of an inclined AFM cantilever with sidewall probe

The resonant frequency and sensitivity of an atomic force microscope (AFM) cantilever with assembled cantilever probe (ACP) have been analyzed and a closed-form expression for the sensitivity of vibration modes has been obtained. The proposed ACP comprises an inclined cantilever and extension, and a tip located at the free end of the extension, which makes the AFM capable of topography at sidew...

متن کامل

Study of the flexural sensitivity and resonant frequency of an inclined AFM cantilever with sidewall probe

The resonant frequency and sensitivity of an atomic force microscope (AFM) cantilever with assembled cantilever probe (ACP) have been analyzed and a closed-form expression for the sensitivity of vibration modes has been obtained. The proposed ACP comprises an inclined cantilever and extension, and a tip located at the free end of the extension, which makes the AFM capable of topography at sidew...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 215 Pt 12  شماره 

صفحات  -

تاریخ انتشار 2012