Proteomic analysis of crop plants under abiotic stress conditions: where to focus our research?
نویسندگان
چکیده
Approximately 80% of human food is composed of crops, which are dominated by cereals that collectively make up 50% of global food production (Langridge and Fleury, 2011). Among cereal crops, rice, wheat, and maize provide approximately half of the calories consumed worldwide. Nevertheless, crop production is seriously hampered by influential abiotic stresses like drought, climate fluctuations, and salinity. It is estimated that up to 50–70% decline in crop productivity is attributed to abiotic stress (Mittler, 2006). Therefore, to ensure the security of global food production, it is essential to produce sustainable crop varieties that can adapt to climate variability, and to develop a broad spectrum of abiotic stress tolerant crops (Tester and Langridge, 2010). This has driven much research into the study of crop responses to abiotic stresses. Proteomics has been successfully used to study abiotic stress responses in a wide range of crops (Abreu et al., 2013; Barkla et al., 2013; Ngara and Ndimba, 2014), especially rice (Kim et al., 2014), wheat (Komatsu et al., 2014), and maize (Benesova et al., 2012; Gong et al., 2014). It is generally envisioned that at this stage, proteomic-based discoveries in rice are likely to be translated into improving other crop plants against ever-changing environmental factors (Kim et al., 2014). Despite the potential role of proteomics to advance the study of stress tolerance in crops, thus far little useful information has beenmade available for crop improvement and breeding, even with the numerous proteomics studies undertaken in recent years. In our opinion, crop stress proteomics should be better focused on the following aspects: dissecting cell specific stress response (especially initial stress responses), identification of stress proteins, and the analysis of post translational modifications (PTMs) of proteins (Figure 1).
منابع مشابه
Impact of Post-Translational Modifications of Crop Proteins under Abiotic Stress
The efficiency of stress-induced adaptive responses of plants depends on intricate coordination of multiple signal transduction pathways that act coordinately or, in some cases, antagonistically. Protein post-translational modifications (PTMs) can regulate protein activity and localization as well as protein-protein interactions in numerous cellular processes, thus leading to elaborate regulati...
متن کاملTo grow or not to grow: a stressful decision for plants.
Progress in improving abiotic stress tolerance of crop plants using classic breeding and selection approaches has been slow. This has generally been blamed on the lack of reliable traits and phenotyping methods for stress tolerance. In crops, abiotic stress tolerance is most often measured in terms of yield-capacity under adverse weather conditions. "Yield" is a complex trait and is determined ...
متن کاملBiological Networks Underlying Abiotic Stress Tolerance in Temperate Crops—A Proteomic Perspective
Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under alte...
متن کاملIncreasing Confidence of Proteomics Data Regarding the Identification of Stress-Responsive Proteins in Crop Plants
Numerous stresses caused by complex environmental conditions, e.g., drought, heat, cold, salinity, strong light, UV, and heavy metals, negatively affect plant growth and lead to substantial crop losses worldwide. It is estimated that up to 50–70% of declines in crop productivity can be attributed to abiotic stress (Mittler, 2006). Abiotic stress, particularly drought and extreme temperatures, w...
متن کاملMaize (Zea Mays L.) Growth and Yield Response to Ethephon Application under Water Stress Conditions
The aim of the present investigation was to study the growth, yield and yield components of maize (Zea mays L.) single cross 704 under different levels of irrigation, plant density, and ethephon in southern Iran where this particular crop has not yet been studied in detail. A field experiment was performed in the 2004 5 growing season at the experimental farm of the College of Agriculture, Shir...
متن کامل