Coset Correlation of LR m-Arrays

نویسندگان

  • Mulan Liu
  • Zunquan Li
چکیده

The normal form and the coset correlation function of an arbitrary linear recurring m-array over F2 are introduced. It is proved that the normal form can be determined by its coset correlation function. Introduction Nguyen [3] studied the coset correlation of m-sequences and pointed out that the coset correlation provides an attractive technique for detecting the normal form when m-sequences are corrupted by noise. In this paper we will generalize the concept on coset correlation of m-sequences to linear recurring m-arrays. Furthermore we will calculate the coset correlation function of any linear recurring m-array. In Section 1, we will give the basic concepts and properties of linear recurring m-arrays which we need; in Section 2, discuss the coset correlation on linear recurring m-arrays; in Section 3, show the proof of the main theorem. 1. Basic concepts and properties of LR m-arrays An array A of period (I, s) means an infinite matrix A = (ai, j)i > 0, j 2 O over the finite field F2 such that %+r, j = ai,j’ai.j+s, i 27 O,j 2 0, (1) where r, s are the smallest positive integers for which the condition (1) is satisfied. AnmxnsubmatrixA(i,j) = (ai+~~,j+j~)o~i~<m,O~j,<nofAiscalledanm~nwindow or state of A at (i,j). Correspondence to: Professor M. Liu, Institute of Systems Science, Academia Sinica, Beijing 100080, China. 0166-218X/93/$06.00

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representations of Double Coset Lie Hypergroups

We study the double cosets of a Lie group by a compact Lie subgroup. We show that a Weil formula holds for double coset Lie hypergroups and show that certain representations of the Lie group lift to representations of the double coset Lie hypergroup. We characterize smooth (analytic) vectors of these lifted representations.

متن کامل

Factorization of Correlation Functions in Coset Conformal Field Theories

We use the conformal Ward identities to study the structure of correlation functions in coset conformal field theories. For a large class of primary fields of arbitrary g/h theory a factorization anzatz is found.The corresponding correlation functions are explicitly expressed in terms of correlation functions of two independent WZNW theories for g and h. Coset theories is an important subclass ...

متن کامل

A Systematic Design of Cellular Permutation Arrays

This paper presents a parametrized design technique for cellular permutation arrays based on coset decompositions of symmetric groups. A new type of permutation cell, referred to as a coset generator, is introduced to customize the propagation delay, fan-in, fan-out, and number of edges in the target network. To aid in the design process, a cost function is derived expressing the number of edge...

متن کامل

0 Factorization of correlation functions in coset conformal field theories

We use the conformal Ward identities to study the structure of correlation functions in coset conformal field theories. For a large class of primary fields of arbitrary g/h theory a factorization anzatz is found.Corresponding correlation functions are explicitly expressed in terms of correlation functions of two independent WZNW theories for g and h. Coset theories is an important subclass of t...

متن کامل

Factorization of correlation functions in coset conformal field

We use the conformal Ward identities to study the structure of correlation functions in coset conformal field theories. For a large class of primary fields of arbitrary g/h theory a factorization anzatz is found.The corresponding correlation functions are explicitly expressed in terms of correlation functions of two independent WZNW theories for g and h. Coset theories is an important subclass ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 47  شماره 

صفحات  -

تاریخ انتشار 1993