Brain Responses During Robot-Error Observation
نویسندگان
چکیده
Brain-controlled robots are a promising new type of assistive device for severely impaired persons. Little is however known about how to optimize the interaction of humans and brain-controlled robots. Information about the human’s perceived correctness of robot performance might provide a useful teaching signal for adaptive control algorithms and thus help enhancing robot control. Here, we studied whether watching robots perform erroneous vs. correct action elicits differential brain responses that can be decoded from single trials of electroencephalographic (EEG) recordings, and whether brain activity during human-robot interaction is modulated by the robot’s visual similarity to a human. To address these topics, we designed two experiments. In experiment I, participants watched a robot arm pour liquid into a cup. The robot performed the action either erroneously or correctly, i.e. it either spilled some liquid or not. In experiment II, participants observed two different types of robots, humanoid and non-humanoid, grabbing a ball. The robots either managed to grab the ball or not. We recorded high-resolution EEG during the observation tasks in both experiments to train a Filter Bank Common Spatial Pattern (FBCSP) pipeline on the multivariate EEG signal and decode for the correctness of the observed action, and for the type of the observed robot. Our findings show that it was possible to decode both correctness and robot type for the majority of participants significantly, although often just slightly, above chance level. Our findings suggest that non-invasive recordings of brain responses elicited when observing robots indeed contain decodable information about the correctness of the robot’s action and the type of observed robot. Our study also indicates that, given the, so far, relatively low decoding accuracies, either further improvements in non-invasive recording and analysis techniques or the utilization of intracranial measurements of neuronal activity will be necessary for practical applications.
منابع مشابه
You Are Wrong! - Automatic Detection of Interaction Errors from Brain Waves
Brain-computer interfaces, as any other interaction modality based on physiological signals and body channels (e.g., muscular activity, speech and gestures), are prone to errors in the recognition of subject’s intent. In this paper we exploit a unique feature of the “brain channel”, namely that it carries information about cognitive states that are crucial for a purposeful interaction. One of t...
متن کاملEvelotion The Cognitive and behavioral inhibition Of Patients With traumatic brain injury
Aim(s): Inhibition, which is defined as one's ability to monitor and control responses, is one of the most important executive actions that occur after a traumatic brain injury. The purpose of this study was to compare the cognitive and behavioral inhibition in MTBI patients one year after their injury with healthy individuals. Participants & Methods: In this causal-comparative study, which wa...
متن کاملInvestigation on the Effect of Different Parameters in Wheeled Mobile Robot Error (TECHNICAL NOTE)
This article has focused on evaluation and identification of effective parameters in positioning performance with an odometry approach of an omni-directional mobile robot. Although there has been research in this field, but in this paper, a new approach has been proposed for mobile robot in positioning performance. With respect to experimental investigations of different parameters in omni-dire...
متن کاملReduction of Odometry Error in a two Wheeled Differential Drive Robot (TECHNICAL NOTE)
Pose estimation is one of the vital issues in mobile robot navigation. Odometry data can be fused with absolute position measurements to provide better and more reliable pose estimation. This paper deals with the determination of better relative localization of a two wheeled differential drive robot by means of odometry by considering the influence of parameters namely weight, velocity, wheel p...
متن کاملMobile Robot Navigation Error Handling Using an Extended Kalman Filter
Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1708.01465 شماره
صفحات -
تاریخ انتشار 2017