Interactive effects of body-size structure and adaptive foraging on food-web stability.
نویسندگان
چکیده
Body-size structure of food webs and adaptive foraging of consumers are two of the dominant concepts of our understanding how natural ecosystems maintain their stability and diversity. The interplay of these two processes, however, is a critically important yet unresolved issue. To fill this gap in our knowledge of ecosystem stability, we investigate dynamic random and niche model food webs to evaluate the proportion of persistent species. We show that stronger body-size structures and faster adaptation stabilise these food webs. Body-size structures yield stabilising configurations of interaction strength distributions across food webs, and adaptive foraging emphasises links to resources closer to the base. Moreover, both mechanisms combined have a cumulative effect. Most importantly, unstructured random webs evolve via adaptive foraging into stable size-structured food webs. This offers a mechanistic explanation of how size structure adaptively emerges in complex food webs, thus building a novel bridge between these two important stabilising mechanisms.
منابع مشابه
The "Goldilocks factor" in food webs.
I n a well known children’s tale, the little girl, Goldilocks, nearly gets herself eaten by bears by boldly choosing between the three bears’ porridge bowls: one too hot and another too cold. In this issue of PNAS, the article ‘‘Size, foraging, and food web structure,’’ by Petchey et al. (1), tells a similar story of food webs in which predator species choose between prey species that are too l...
متن کاملFood-chain length and adaptive foraging.
Food-chain length, the number of feeding links from the basal species to the top predator, is a key characteristic of biological communities. However, the determinants of food-chain length still remain controversial. While classical theory predicts that food-chain length should increase with increasing resource availability, empirical supports of this prediction are limited to those from simple...
متن کاملTowards a mechanistic understanding of temperature and enrichment effects on species interaction strength, omnivory and food-web structure.
Revealing the links between species functional traits, interaction strength and food-web structure is of paramount importance for understanding and predicting the relationships between food-web diversity and stability in a rapidly changing world. However, little is known about the interactive effects of environmental perturbations on individual species, trophic interactions and ecosystem functi...
متن کاملFLEXIBLE FORAGERS IN FOOD WEBS Consequences of adaptive foraging in diverse communities
1. Selective pressures acting on foraging activities constrain the strength of interaction, hence the stability and energetic availability in food webs. 2. Because such selective pressures are usually measured at the individual level and because most experimental and theoretical works focus on simple settings, linking adaptive foraging with community scale patterns is still a far stretch. 3. So...
متن کاملAdaptive behaviour, tri-trophic food-web stability and damping of chaos.
We examine the effect of adaptive foraging behaviour within a tri-trophic food web with intra-guild predation. The intra-guild prey is allowed to adjust its foraging effort so as to achieve an optimal per capita growth rate in the face of realized feeding, predation risk and foraging cost. Adaptive fitness-seeking behaviour of the intra-guild prey has a stabilizing effect on the tri-trophic foo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology letters
دوره 15 3 شماره
صفحات -
تاریخ انتشار 2012