Consolidation of Fear Extinction Requires NMDA Receptor-Dependent Bursting in the Ventromedial Prefrontal Cortex

نویسندگان

  • Anthony Burgos-Robles
  • Ivan Vidal-Gonzalez
  • Edwin Santini
  • Gregory J. Quirk
چکیده

Extinction of conditioned fear is an active learning process requiring N-methyl-D-aspartate receptors (NMDARs), but the timing, location, and neural mechanisms of NMDAR-mediated processing in extinction are a matter of debate. Here we show that infusion of the NMDAR antagonist CPP into the ventromedial prefrontal cortex (vmPFC) prior to, or immediately after, extinction training impaired 24 hr recall of extinction. These findings indicate that consolidation of extinction requires posttraining activation of NMDARs within the vmPFC. Using multichannel unit recording, we observed that CPP selectively reduced burst firing in vmPFC neurons, suggesting that bursting in vmPFC is necessary for consolidation of extinction. In support of this, we found that the degree of bursting in infralimbic vmPFC neurons shortly after extinction predicted subsequent recall of extinction. We suggest that NMDAR-dependent bursting in the infralimbic vmPFC initiates calcium-dependent molecular cascades that stabilize extinction memory, thereby allowing for successful recall of extinction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Memory for fear extinction requires mGluR5-mediated activation of infralimbic neurons.

Consolidation of fear extinction involves enhancement of N-methyl D aspartate (NMDA) receptor-dependent bursting in the infralimbic region (IL) of the medial prefrontal cortex (mPFC). Previous studies have shown that systemic blockade of metabotropic glutamate receptor type 5 (mGluR5) reduces bursting in the mPFC and mGluR5 agonists enhance NMDA receptor currents in vitro, suggesting that mGluR...

متن کامل

Dissociable roles for the ventromedial prefrontal cortex and amygdala in fear extinction: NR2B contribution.

Fear extinction, which involves learning to suppress the expression of previously learned fear, requires N-methyl-D-aspartate receptors (NMDARs) and is mediated by the amygdala and ventromedial prefrontal cortex (vmPFC). Like other types of learning, extinction involves acquisition and consolidation phases. We recently demonstrated that NR2B-containing NMDARs (NR2Bs) in the lateral amygdala (LA...

متن کامل

Role of beta-adrenergic receptors in the ventromedial prefrontal cortex during contextual fear extinction in rats.

It has been reported that stress-related activation of the noradrenergic system strengthens the formation of aversive memories and that beta-adrenergic receptors seem to be involved in this emotional memory processing. In this study, the effects of beta-adrenergic compounds on the extinction of contextual conditioned fear responses were evaluated. Rats were trained with footshock in a condition...

متن کامل

Vagus nerve stimulation enhances extinction of conditioned fear and modulates plasticity in the pathway from the ventromedial prefrontal cortex to the amygdala

Fearful experiences can produce long-lasting and debilitating memories. Extinction of the fear response requires consolidation of new memories that compete with fearful associations. Subjects with posttraumatic stress disorder (PTSD) show impaired extinction of conditioned fear, which is associated with decreased ventromedial prefrontal cortex (vmPFC) control over amygdala activity. Vagus nerve...

متن کامل

The Role of NMDA Receptors in Extinction of Cocaine Self-Administration

Relapse is highly prevalent among recovering addicts, and can be triggered by associations made between the rewarding effects of the drug and cues, such as drug paraphernalia or contexts. Inhibiting these associations, through new extinction learning, could help reduce relapse rates. Extinction is formed in phases, like other types of memory. The memory first is acquired in short-term memory, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2007