Quantifying nanoparticle cellular uptake: which method is best?

نویسندگان

  • Barbara Drasler
  • Dimitri Vanhecke
  • Laura Rodriguez-Lorenzo
  • Alke Petri-Fink
  • Barbara Rothen-Rutishauser
چکیده

As the range of engineered nanoparticles (NPs) designed as specific carriers increases, for example for cell targeting and drug delivery, the question on how many NPs are interacting or are taken up by cells is becoming increasingly important for any potential biomedical application. On one hand, the delivered dose of such NPs to the targeted cells is a key parameter in the assessment of their efficiency to perform the desired action (e.g., deliver the therapeutic substance or induce a specific effect), on the other hand, the assessment of intracellular NPs is crucial also from the safety aspect as NPs might come unintentionally in contact by untargeted cells. Particularly from the regulative perspective, it is important that reproducible and reliable analytical methods for the intracellular quantification of NPs are available at an early stage in the development in order to correlate the cell burden of NPs with their possible effects at a cellular level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On-demand cellular uptake of cysteine conjugated gadolinium based mesoporous silica nanoparticle with breast cancer-cells

Design, synthesis, and conjugation of mesoporous silica nanoparticles (MSNs) with biomolecules is a matter of growing interest to enhance selective uptake of contrast agents like gadolinium (Gd3+) by cancer cells. Here, by targeting xc-cystine/glutamate antiporter system in breast cancer cells, conjugation of MSN-Gd3+ with cysteine is used to enhance cancer cellular uptake of Gd3+. Reactions de...

متن کامل

In-vitro cellular uptake and transport study of 9-nitrocamptothecin PLGA nanoparticles across Caco-2 cell monolayer model

The uptake and transport of 9-nitrocamptothecin (9-NC), a potent anticancer agent, across Caco-2 cell monolayers was studied as a free and PLGA nanoparticle loaded drug. Different sizes (110 to 950 nm) of 9-nitrocamptothecin nanoparticles using poly (lactic-glycolic acid) were prepared by via the nanoprecipitation method. The transport of nanoparticles across the Caco-2 cell monolayer as a func...

متن کامل

In-vitro cellular uptake and transport study of 9-nitrocamptothecin PLGA nanoparticles across Caco-2 cell monolayer model

The uptake and transport of 9-nitrocamptothecin (9-NC), a potent anticancer agent, across Caco-2 cell monolayers was studied as a free and PLGA nanoparticle loaded drug. Different sizes (110 to 950 nm) of 9-nitrocamptothecin nanoparticles using poly (lactic-glycolic acid) were prepared by via the nanoprecipitation method. The transport of nanoparticles across the Caco-2 cell monolayer as a func...

متن کامل

Study on Fe3O4 Magnetic Nanoparticles ‎Size Effect on Temperature Distribution ‎of Tumor in Hyperthermia: A Finite ‎Element Method ‎

   In recent years, Hyperthermia has been used as an emerging technique for cancer treatment, especially for localized tumors. One of the promising cancer treatment approaches is magnetic nanoparticle (MNPs) Hyperthermia. In this theoretical work, the temperature distribution of a common tumor over the different sizes of Fe3O4 magnetic nanoparticles, namely 25, 50, 100, and 200 nm, was stud...

متن کامل

Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle

Interaction of nanoparticles with proteins is the basis of nanoparticle bio-reactivity. This interaction gives rise to the formation of a dynamic nanoparticle-protein corona. The protein corona may influence cellular uptake, inflammation, accumulation, degradation and clearance of the nanoparticles. Furthermore, the nanoparticle surface can induce conformational changes in adsorbed protein mole...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanomedicine

دوره 12 10  شماره 

صفحات  -

تاریخ انتشار 2017