Stochastic simulation model for nonstationary time series using an autoregressive wavelet decomposition: Applications to rainfall and temperature

نویسندگان

  • Hyun-Han Kwon
  • Upmanu Lall
  • Abedalrazq F. Khalil
چکیده

[1] A time series simulation scheme based on wavelet decomposition coupled to an autoregressive model is presented for hydroclimatic series that exhibit band-limited lowfrequency variability. Many nonlinear dynamical systems generate time series that appear to have amplitudeand frequency-modulated oscillations that may correspond to the recurrence of different solution regimes. The use of wavelet decomposition followed by an autoregressive model of each leading component is explored as a model for such time series. The first example considered is the Lorenz-84 low-order model of extratropical circulation, which has been used to illustrate how chaos and intransitivity (multiple stable solutions) can lead to low-frequency variability. The central England temperature (CET) time series, the NINO3.4 series that is a surrogate for El Nino–Southern Oscillation, and seasonal rainfall from Everglades National Park, Florida, are then modeled with this approach. The proposed simulation model yields better results than a traditional linear autoregressive (AR) time series model in terms of reproducing the time-frequency properties of the observed rainfall, while preserving the statistics usually reproduced by the AR models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some New Methods for Prediction of Time Series by Wavelets

Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...

متن کامل

Analysis of Non-Stationary Time Series using Wavelet Decomposition

Abstract: The increased computational speed and developments in the area of algorithms have created the possibility for efficiently identifying a well-fitting time series model for the given nonstationary-nonlinear time series and use it for prediction. In this paper a new method is used for analyzing a given nonstationary-nonlinear time series. Based on the Multiresolution Analysis (MRA) and n...

متن کامل

Robust Estimation of Nonstationary, Fractionally Integrated, Autoregressive, Stochastic Volatility

Empirical volatility studies have discovered nonstationary, long-memory dynamics in the volatility of the stock market and foreign exchange rates. This highly persistent, infinite variance—but still mean reverting—behavior is commonly found with nonparametric estimates of the fractional differencing parameter d, for financial volatility. In this paper, a fully parametric Bayesian estimator, rob...

متن کامل

Improvement of Gene Expression Programming Model Performance using Wavelet Transform for the Estimation of Long-Term Rainfall in Rasht City

Rainfall may be considered as the most important source of drinking water and watering land in different areas all over the world. Therefore, simulation and estimation of the hydrological phenomenon is of paramount importance. In this study, for the first time, the long-term rainfall in Rasht city was simulated using an optimum hybrid artificial intelligence (AI) model over a 62 year period fro...

متن کامل

Stochastic Monthly Rainfall Time Series Analysis, Modeling and Forecasting ( A cas study: Ardebilcity

Rainfall is the main source of the available water for human. Predicting the amount of the future rainfall is useful for informed policies, planning and decision making that will help potentially make optimal and sustainable use of available water resources. The main aim of this study was to investigate the trend and forecast monthly rainfall of selected synoptic station in Ardabil province usi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007