Accumulation, Biotransformation, Histopathology and Paralysis in the Pacific Calico Scallop Argopecten ventricosus by the Paralyzing Toxins of the Dinoflagellate Gymnodinium catenatum
نویسندگان
چکیده
The dinoflagellate Gymnodinium catenatum produces paralyzing shellfish poisons that are consumed and accumulated by bivalves. We performed short-term feeding experiments to examine ingestion, accumulation, biotransformation, histopathology, and paralysis in the juvenile Pacific calico scallop Argopecten ventricosus that consume this dinoflagellate. Depletion of algal cells was measured in closed systems. Histopathological preparations were microscopically analyzed. Paralysis was observed and the time of recovery recorded. Accumulation and possible biotransformation of toxins were measured by HPLC analysis. Feeding activity in treated scallops showed that scallops produced pseudofeces, ingestion rates decreased at 8 h; approximately 60% of the scallops were paralyzed and melanin production and hemocyte aggregation were observed in several tissues at 15 h. HPLC analysis showed that the only toxins present in the dinoflagellates and scallops were the N-sulfo-carbamoyl toxins (C1, C2); after hydrolysis, the carbamate toxins (epimers GTX2/3) were present. C1 and C2 toxins were most common in the mantle, followed by the digestive gland and stomach-complex, adductor muscle, kidney and rectum group, and finally, gills. Toxin profiles in scallop tissue were similar to the dinoflagellate; biotransformations were not present in the scallops in this short-term feeding experiment.
منابع مشابه
Effects of the toxic dinoflagellate, Gymnodinium catenatum on hydrolytic and antioxidant enzymes, in tissues of the giant lions-paw scallop Nodipecten subnodosus.
This study documents effects of the toxic dinoflagellate Gymnodinium catenatum, a producer of paralytic shellfish poison, on juvenile farmed (5.9+/-0.39 cm) giant lions-paw scallop Nodipecten subnodosus. Scallops were fed bloom concentrations of toxic dinoflagellate G. catenatum for 7 h. The effect of the toxic dinoflagellate in different tissues was determined by analysis of antioxidant enzyme...
متن کاملGenomics Study of the Exposure Effect of Gymnodinium catenatum, a Paralyzing Toxin Producer, on Crassostrea gigas' Defense System and Detoxification Genes
BACKGROUND Crassostrea gigas accumulates paralytic shellfish toxins (PST) associated with red tide species as Gymnodinium catenatum. Previous studies demonstrated bivalves show variable feeding responses to toxic algae at physiological level; recently, only one study has reported biochemical changes in the transcript level of the genes involved in C. gigas stress response. PRINCIPAL FINDINGS ...
متن کاملEffects of chloramphenicol, erythromycin, and furazolidone on growth of Isochrysis galbana and Chaetoceros gracilis
This study focused on determining the effects of antibiotics on microalgae used as food for scallop larvae. Six different dose levels of chloramphenicol, erythromycin, and furazolidone were added to cultures of Isochrysis galbana and Chaetoceros gracilis. An in vivo experiment was subsequently conducted to determine the effect of chloramphenicol and erythromycin on larval survival of the Pacifi...
متن کاملEcological and Physiological Studies of Gymnodinium catenatum in the Mexican Pacific: A Review
This review presents a detailed analysis of the state of knowledge of studies done in Mexico related to the dinoflagellate Gymnodinium catenatum, a paralytic toxin producer. This species was first reported in the Gulf of California in 1939; since then most studies in Mexico have focused on local blooms and seasonal variations. G. catenatum is most abundant during March and April, usually associ...
متن کاملAccumulation and elimination profiles of paralytic shellfish poison in the short-necked clam Tapes japonica fed with the toxic dinoflagellate Gymnodinium catenatum.
The paralytic shellfish poison (PSP)-producing dinoflagellate Gymnodinium catenatum (Gc) was fed to the short-necked clam Tapes japonica, and the accumulation, transformation and elimination profiles of PSP were investigated by means of high-performance liquid chromatography with postcolumn fluorescence derivatization (HPLC-FLD). The short-necked clams ingested most of the Gc cells (4 x 10(6) c...
متن کامل