Tight Coupling of Laser Scanner and Inertial Measurements for a Fully Autonomous Relative Navigation Solution
نویسندگان
چکیده
The paper describes a fully autonomous relative navigation solution for urban environments (indoor and outdoor). The navigation solution is derived by combining measurements from a two-dimensional (2D) laser scanner with measurements from inertial sensors. This derivation relies on the availability of structures (lines and surfaces) within the scan range (80 m depth, typically). Navigation herein is performed in completely unknown environments. No map information is assumed to be available a priori. Indoor and outdoor live data test results are used to demonstrate performance characteristics of the laser/inertial integrated navigation. Relative positioning at the cm-level is demonstrated for indoor scenarios where well-defined features and good feature geometry are available. Test data from challenging urban environments show position errors at the meter-level after approximately 200 m of travel (between 0.6% and 0.8% of distance traveled).
منابع مشابه
Navigation in Difficult Environments: Multi-Sensor Fusion Techniques
This paper focuses on multi-sensor fusion for navigation in difficult environments where none of the existing navigation technologies can satisfy requirements for accurate and reliable navigation if used in a stand-alone mode. A generic multi-sensor fusion approach is presented. This approach builds the navigation mechanization around a self-contained inertial navigator, which is used as a core...
متن کاملLight Detection and Ranging-Based Terrain Navigation – A Concept Exploration
This paper discusses the use of Airborne Light Detection And Ranging (LiDAR) equipment for terrain navigation. Airborne LiDAR is a relatively new technology used primarily by the geo-spatial mapping community to produce highly accurate and dense terrain elevation maps. In this paper, the term LiDAR refers to a scanning laser ranger rigidly mounted to an aircraft, as opposed to an integrated sen...
متن کاملCalibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation
The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...
متن کاملDesign and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter
This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...
متن کاملPerformance Modeling of Ring Laser Gyro in Inertial
In this paper, the performance of a Ring Laser Gyro based inertial navigation is investigated. Dynamic and stochastic modeling are applied to gyro simulation and performance evaluation. In the dynamic model, some parameters such as scale factor and environmental sensitivity have been determined, whereas in the stochastic model, the other parameters such as random drift and measurement noise...
متن کامل