Towards scalable nano-engineering of graphene

نویسندگان

  • A. J. Martínez-Galera
  • I. Brihuega
  • A. Gutiérrez-Rubio
  • T. Stauber
  • J. M. Gómez-Rodríguez
چکیده

By merging bottom-up and top-down strategies we tailor graphene's electronic properties within nanometer accuracy, which opens up the possibility to design optical and plasmonic circuitries at will. In a first step, graphene electronic properties are macroscopically modified exploiting the periodic potential generated by the self assembly of metal cluster superlattices on a graphene/Ir(111) surface. We then demonstrate that individual metal clusters can be selectively removed by a STM tip with perfect reproducibility and that the structures so created are stable even at room temperature. This enables one to nanopattern circuits down to the 2.5 nm only limited by the periodicity of the Moiré-pattern, i.e., by the distance between neighbouring clusters, and different electronic and optical properties should prevail in the covered and uncovered regions. The method can be carried out on micro-meter-sized regions with clusters of different materials permitting to tune the strength of the periodic potential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoscale strainability of graphene by laser shock-induced three-dimensional shaping.

Graphene has many promising physical properties. It has been discovered that local strain in a graphene sheet can alter its conducting properties and transport gaps. It is of great importance to develop scalable strain engineering techniques to control the local strains in graphene and understand the limit of the strains. Here, we present a scalable manufacturing process to generate three-dimen...

متن کامل

Nano-scale strain engineering of graphene and graphene-based devices

Structural distortions in nano-materials can induce dramatic changes in their electronic properties. This situation is well manifested in graphene, a two-dimensional honeycomb structure of carbon atoms with only one atomic layer thickness. In particular, strained graphene can result in both charging effects and pseudo-magnetic fields, so that controlled strain on a perfect graphene lattice can ...

متن کامل

Raman spectroscopy study of nano sheets of graphene and measurement of their resistivity

Graphene is a promising candidate for future high-speed electronics applications. It is a thin layer of pure carbon in which every atom is available for chemical reaction from two sides (due to the 2D structure). This is the only form of carbon (or solid material) with this characteristic feature. Graphene oxide (GO) was synthesized through the oxidation of graphite using the Hummer’s method, i...

متن کامل

Non-templated ambient nanoperforation of graphene: a novel scalable process and its exploitation for energy and environmental applications.

Nano-perforation of 2D graphene sheets is a recent and strategically significant means to exploit such materials in modern applications such as energy production and storage. However, current options for the synthesis of holey graphene (hG) through nano-perforation of graphene involve industrially undesirable steps viz., usage of expensive/noble metal or silica nanoparticle templates and/or haz...

متن کامل

Synthesis of water soluble graphene.

A facile and scalable preparation of aqueous solutions of isolated, sparingly sulfonated graphene is reported. (13)C NMR and FTIR spectra indicate that the bulk of the oxygen-containing functional groups was removed from graphene oxide. The electrical conductivity of thin evaporated films of graphene (1250 S/m) relative to similarly prepared graphite (6120 S/m) implies that an extended conjugat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014