Modular behavior of tauD provides insight into the origin of specificity in alpha-ketoglutarate-dependent nonheme iron oxygenases.
نویسندگان
چکیده
Taurine alpha-ketoglutarate dioxygenase (tauD) is one of the best-studied alpha-ketoglutarate (alphaKG)-dependent nonheme iron oxygenases. As with all oxygenases, a fine balance must be struck between generating a species sufficiently reactive for the required chemistry and controlling that species to prevent undesirable side reactions [Klinman JP (2007) Accts Chem Res 40:325-333]. In the case of tauD, the substrate oxidizing species has been shown to be a ferryl-oxo, and the introduction of deuterium at the reactive position of substrate results in an enormous kinetic isotope effect together with a partial uncoupling of oxygen activation from substrate oxidation [Price JC, Barr EW, Glass TE, Krebs C, Bollinger JM (2003) J Am Chem Soc 125:13008-13009]. We have generated a series of site-specific variants at a position that resides directly behind bound substrate (F159 to L, V, A, and G). Decreasing side-chain bulk diminishes the coupling of oxygen activation to C-H cleavage, which is further reduced by substrate deuteration. Despite this impact, oxygen activation remains completely coupled to the oxidative decarboxylation of alphaKG. The concentration of bis-Tris buffer impacts the extent of coupling of oxygen activation to C-H cleavage, implicating the buffer in the uncoupling pathway. These data indicate a critical role for residue 159 in substrate positioning and reaction in tauD and show that minor active-site perturbations in these enzymes could allow for changes in substrate reactivity while maintaining substrate triggering and oxygen binding/activation.
منابع مشابه
Insight into the mechanism of an iron dioxygenase by resolution of steps following the FeIV=HO species.
Iron oxygenases generate elusive transient oxygen species to catalyze substrate oxygenation in a wide range of metabolic processes. Here we resolve the reaction sequence and structures of such intermediates for the archetypal non-heme Fe(II) and alpha-ketoglutarate-dependent dioxygenase TauD. Time-resolved Raman spectra of the initial species with (16)O(18)O oxygen unequivocally establish the F...
متن کاملStructural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes.
Mononuclear nonheme-Fe(II)-dependent oxygenases comprise an extended family of oxidising enzymes, of which the 2-oxoglutarate-dependent oxygenases and related enzymes are the largest known subgroup. Recent crystallographic and mechanistic studies have helped to define the overall fold of the 2-oxoglutarate-dependent enzymes and have led to the identification of coordination chemistry closely re...
متن کاملDirect spectroscopic detection of a C-H-cleaving high-spin Fe(IV) complex in a prolyl-4-hydroxylase.
The Fe(II)- and alpha-ketoglutarate (alphaKG)-dependent dioxygenases use mononuclear nonheme iron centers to effect hydroxylation of their substrates and decarboxylation of their cosubstrate, alphaKG, to CO(2) and succinate. Our recent dissection of the mechanism of taurine:alphaKG dioxygenase (TauD), a member of this enzyme family, revealed that two transient complexes accumulate during cataly...
متن کاملModeling TauD-J: a high-spin nonheme oxoiron(IV) complex with high reactivity toward C-H bonds.
High-spin oxoiron(IV) species are often implicated in the mechanisms of nonheme iron oxygenases, their C-H bond cleaving properties being attributed to the quintet spin state. However, the few available synthetic S = 2 Fe(IV)═O complexes supported by polydentate ligands do not cleave strong C-H bonds. Herein we report the characterization of a highly reactive S = 2 complex, [Fe(IV)(O)(TQA)(NCMe...
متن کاملSteady-state and transient kinetic analyses of taurine/alpha-ketoglutarate dioxygenase: effects of oxygen concentration, alternative sulfonates, and active-site variants on the FeIV-oxo intermediate.
Taurine/alpha-ketoglutarate (alphaKG) dioxygenase (TauD), an archetype alphaKG-dependent hydroxylase, is a non-heme mononuclear Fe(II) enzyme that couples the oxidative decarboxylation of alphaKG with the conversion of taurine to aminoacetaldehyde and sulfite. The crystal structure of taurine-alphaKG-Fe(II)TauD is known, and spectroscopic studies have kinetically defined the early steps in cata...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 47 شماره
صفحات -
تاریخ انتشار 2009