Classification of Cells with Membrane Staining and/or Fixation Based on Cellular Specific Membrane Capacitance and Cytoplasm Conductivity

نویسندگان

  • Song-Bin Huang
  • Yang Zhao
  • Deyong Chen
  • Shing-Lun Liu
  • Yana Luo
  • Tzu-Keng Chiu
  • Junbo Wang
  • Jian Chen
  • Min-Hsien Wu
چکیده

Single-cell electrical properties (e.g., specific membrane capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm)) have been regarded as potential label-free biophysical markers for the evaluation of cellular status. However, whether there exist correlations between these biophysical markers and cellular status (e.g., membrane-associate protein expression) is still unknown. To further validate the utility of single-cell electrical properties in cell type classification, Cspecific membrane and σcytoplasm of single PC-3 cells with membrane staining and/or fixation were analyzed and compared in this study. Four subtypes of PC-3 cells were prepared: untreated PC-3 cells, PC-3 cells with anti-EpCAM staining, PC-3 cells with fixation, and fixed PC-3 cells with anti-EpCAM staining. In experiments, suspended single cells were aspirated through microfluidic constriction channels with raw impedance data quantified and translated to Cspecific membrane and σcytoplasm. As to experimental results, OPEN ACCESS Micromachines 2015, 6 164 significant differences in Cspecific membrane were observed for both live and fixed PC-3 cells with and without membrane staining, indicating that membrane staining proteins can contribute to electrical properties of cellular membranes. In addition, a significant decrease in σcytoplasm was located for PC-3 cells with and without fixation, suggesting that cytoplasm protein crosslinking during the fixation process can alter the cytoplasm conductivity. Overall, we have demonstrated how to classify single cells based on cellular electrical properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell Type Classification Based on Specific Membrane Capacitance and Cytoplasm Conductivity Using Microfluidic Devices

This paper presents a microfluidic system enabling cell type classification based on continuous characterization of cellular specific membrane capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm). In this study, cells were aspirated continuously through a constriction channel with cell elongations and two-frequency impedance profiles measured. Based on a distributed equivale...

متن کامل

Polyethylene Glycol Repairs Damaged Membrane; Biophysical Application of Artificial Planar Bilayer to Mimic Biological Membrane

Polyethylene glycol (PEG) is a hydrophilic polymer, known to be capable to fuse numerous single cells in vitro, to join the membranes of adjacent neurons and giant invertebrate axons, and to seal damaged neural membranes. The molecular mechanism of the action of PEG is still unknown. It is believed that PEG dehydrates membranes and enables their structural components to resolve and rearrange in...

متن کامل

Proteases Detection of invitro Culture of Midgut Cells from Hyalomma anatolicum anatolicum (Acari: Ixodidae)

  Proteases play a key role in protein digestion in ticks and other haematophagous insects. Our understanding of blood meal digestion in digestive system of ticks can be very useful for better understanding of basic rules for control of ticks. Cells of the midgut endocytose blood components. Blood proteins uptake by midgut cells, suggesting the presence of proteases in the midgut cells. In this...

متن کامل

Specific membrane capacitance, cytoplasm conductivity and instantaneous Young’s modulus of single tumour cells

As label-free biomarkers, biophysical properties of cells are widely used for cell type classification. However, intrinsic biophysical markers, e.g., specific membrane capacitance (Cspecific membrane), cytoplasm conductivity (σconductivity) and instantaneous Young's modulus (Einstantaneous) measured for hundreds of single cells were not yet reported. In this study, single cells in suspension (a...

متن کامل

Modified CNTs/Nafion composite: The role of sulfonate groups on the performance of prepared proton exchange methanol fuel cell’s membrane

A novel Nafion®-based nanocomposite membrane was synthesized to be applied as direct methanol fuel cells (DMFCs). Carbon nanotubes (CNTs) were coated with a layer of silica and then reacted by chlorosulfonic acid to produce sulfonate-functionalized silicon dioxide coated carbon nanotubes (CNT@SiO2-SO3H). The functionalized CNTs were then introduced to Nafion®, and subsequently, methanol permeab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Micromachines

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015