Distribution of aquaporin water channels AQP1 and AQP5 in the ductal system of the human pancreas.
نویسندگان
چکیده
BACKGROUND The exocrine pancreas secretes large volumes of isotonic fluid, most of which originates from the ductal system. The role of aquaporin (AQP) water channels in this process is unknown. METHODS Expression and localisation of known AQP isoforms was examined in normal human pancreas, pancreatic adenocarcinoma, and pancreatic cell lines of ductal origin (Capan-1, Capan-2, and HPAF) using reverse transcriptase-polymerase chain reaction and immunohistochemistry. RESULTS Messenger RNAs for AQP1, -3, -4, -5, and -8 were detected in normal pancreas and in pancreatic adenocarcinoma. The cell lines expressed AQP3, -4, and -5 but lacked AQP1 and AQP8. Immunohistochemistry of normal pancreas revealed that AQP1 is strongly expressed in centroacinar cells and in both the apical and basolateral domains of intercalated and intralobular duct epithelia. AQP1 expression declined with distance along the small interlobular ducts and was not detectable in larger interlobular ducts. AQP3 and AQP4 were not detectable by immunohistochemistry. AQP5 was observed at the apical membrane of intercalated duct cells and also in duct associated mucoid glands. AQP8 was confined to the apical pole of acinar cells. Both AQP1 and AQP5 were colocalised with cystic fibrosis transmembrane conductance regulator (CFTR) at the apical membrane of intercalated duct cells. CONCLUSIONS AQP1 and AQP5 are strongly expressed in the intercalated ducts of the human pancreas. Their distribution correlates closely with that of CFTR, a marker of ductal electrolyte secretion. This suggests that fluid secretion is concentrated in the terminal branches of the ductal tree and that both AQP1 and AQP5 may play a significant role.
منابع مشابه
Expression and immunolocalization of aquaporin water channels in rat exocrine pancreas.
Both the acinar and ductal cells of the pancreas secrete a near-isotonic fluid and may thus be sites of aquaporin (AQP) water channel expression. Northern blot analysis of mRNA from whole rat pancreas revealed high levels of AQP1 and AQP8 expression, whereas lower levels of AQP4 and AQP5 expression were just detectable by RT-PCR Southern blot analysis. Immunohistochemistry showed that AQP1 is l...
متن کاملDownregulation of aquaporins 1 and 5 in nasal gland by osmotic stress in ducklings, Anas platyrhynchos: implications for the production of hypertonic fluid.
Using primers against highly conserved regions of mammalian and bird aquaporins in RT-PCR experiments, we amplified products derived from duck (Anas platyrhynchos) nasal gland RNA that were identified as homologues of mammalian and chicken aquaporin 1 and aquaporin 5 cDNAs by sequencing. Using digoxigenin-labelled probes derived from these PCR products in northern blot analyses of mRNA isolated...
متن کاملIdentification and localization of aquaporin water channels in human salivary glands.
Aquaporin (AQP) water channels are expressed in a variety of fluid-transporting epithelia and are likely to play a significant role in salivary secretion. Our aim was to identify and localize the aquaporins expressed in human salivary glands. Total RNA was extracted from human parotid, submandibular, sublingual, and labial glands and from human brain. Expression of aquaporin mRNA was assessed b...
متن کاملRelative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG.
The water channel aquaporin 1 (AQP1) and certain Rh-family members are permeable to CO(2) and NH(3). Here, we use changes in surface pH (pH(S)) to assess relative CO(2) vs. NH(3) permeability of Xenopus oocytes expressing members of the AQP or Rh family. Exposed to CO(2) or NH(3), AQP1 oocytes exhibit a greater maximal magnitude of pH(S) change (DeltapH(S)) compared with day-matched controls in...
متن کاملO21: Aquaporinopathy and Cerebral Inflammation
Many mammalian AQPs, including AQP1, AQP2, AQP4, AQP5 and AQP8, function primarily as bidirectional water-selective transporters. Cells expressing AQPs on their plasma membrane have an ~5- to 50-fold higher osmotic water permeability than membranes that do not. Water transport through single-file pores poses a biophysical limitation on the efficiency with which AQPs can transport water, so that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gut
دوره 52 7 شماره
صفحات -
تاریخ انتشار 2003