Influence of Surface Passivation on AlN Barrier Stress and Scattering Mechanism in Ultra-thin AlN/GaN Heterostructure Field-Effect Transistors

نویسندگان

  • Y J Lv
  • X B Song
  • Y G Wang
  • Y L Fang
  • Z H Feng
چکیده

Ultra-thin AlN/GaN heterostructure field-effect transistors (HFETs) with, and without, SiN passivation were fabricated by the same growth and device processes. Based on the measured DC characteristics, including the capacitance-voltage (C-V) and output current-voltage (I-V) curves, the variation of electron mobility with gate bias was found to be quite different for devices with, and without, SiN passivation. Although the AlN barrier layer is ultra thin (c. 3 nm), it was proved that SiN passivation induces no additional tensile stress and has no significant influence on the piezoelectric polarization of the AlN layer using Hall and Raman measurements. The SiN passivation was found to affect the surface properties, thereby increasing the electron density of the two-dimensional electron gas (2DEG) under the access region. The higher electron density in the access region after SiN passivation enhanced the electrostatic screening for the non-uniform distributed polarization charges, meaning that the polarization Coulomb field scattering has a weaker effect on the electron drift mobility in AlN/GaN-based devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-dimensional electron gases in strained quantum wells for AlN/GaN/AlN double heterostructure field-effect transistors on AlN

Double heterostructures of strained GaN quantum wells (QWs) sandwiched between relaxed AlN layers provide a platform to investigate the quantum-confined electronic and optical properties of the wells. The growth of AlN/GaN/AlN heterostructures with varying GaN quantum well thicknesses on AlN by plasma molecular beam epitaxy (MBE) is reported. Photoluminescence spectra provide the optical signat...

متن کامل

Influence of the ratio of gate length to drain-to-source distance on the electron mobility in AlGaN/AlN/GaN heterostructure field-effect transistors

Using measured capacitance-voltage curves with different gate lengths and current-voltage characteristics at low drain-to-source voltage for the AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) of different drain-to-source distances, we found that the dominant scattering mechanism in AlGaN/AlN/GaN HFETs is determined by the ratio of gate length to drain-to-source distance. For dev...

متن کامل

Formation of ohmic contacts to ultra-thin channel AlN/GaN HEMTs

p s s current topics in solid state physics c status solidi 1 Introduction AlGaN/GaN high electron mobility transistor (HEMT) technology is rapidly advancing into the 100-200 GHz operation regime with the scaling of gate length, and the reduction of parasitic elements. Scaling of vertical het-erostructure dimensions is needed to support further improvements in HEMT performance. Therefore, ultra...

متن کامل

AlGaN/GaN MISHEMTs with AlN gate dielectric grown by thermal ALD technique

Recently, AlN plasma-enhanced atomic layer deposition (ALD) passivation technique had been proposed and investigated for suppressing the dynamic on-resistance degradation behavior of high-electron-mobility transistors (HEMTs). In this paper, a novel gate dielectric and passivation technique for GaN-on-Si AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MISHEMTs) is pr...

متن کامل

MBE-Grown Ultra-shallow AlN/GaN HFET Technology

Due to large polarization effects, two-dimensional electron gas (2DEG) concentrations higher than 1x10 cm can be produced at the AlN/GaN heterojunction with AlN barriers as thin as 2 nm. This ultra-shallow channel together with the wide bandgap of AlN (6.2 eV) makes AlN/GaN heterojunction field effect transistors (HFET) extremely attractive for high frequency (>100 GHz) high power applications....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016