The Origin of Jovian Planets in Protostellar Disks: The Role of Dead Zones

نویسنده

  • Soko Matsumura
چکیده

The final masses of Jovian planets are attained when the tidal torques that they exert on their surrounding protostellar disks are sufficient to open gaps in the face of disk viscosity, thereby shutting off any further accretion. In sufficiently well-ionized disks, the predominant form of disk viscosity originates from the Magneto-Rotational Instability (MRI) that drives hydromagnetic disk turbulence. In the region of sufficiently low ionization rate – the so-called dead zone – turbulence is damped and we show that lower mass planets will be formed. We considered three ionization sources (X-rays, cosmic rays, and radioactive elements) and determined the size of a dead zone for the total ionization rate by using a radiative, hydrostatic equilibrium disk model developed by Chiang et al. (2001). We studied a range of surface mass density (Σ0 = 10 3−105 g cm−2) and X-ray energy (kTx = 1 − 10 keV). We also compared the ionization rate of such a disk by X-rays with cosmic rays and find that the latter dominate X-rays in ionizing protostellar disks unless the X-ray energy is very high (5− 10 keV). Among our major conclusions are that for typical conditions, dead zones encompass a region extending out to several AU – the region in which terrestrial planets are found in our solar system. Our results suggest that the division between low and high mass planets in exosolar planetary systems is a consequence of the presence of a dead zone in their natal protoplanetary disks. We also find that the extent of a dead zone is mainly dependent on the disk’s surface mass density. Our results provide further support for the idea that Jovian planets in exosolar systems must have migrated substantially inwards from their points of origin. Subject headings: circumstellar matter planetary system solar system: formation accretion disks MHD stars: pre-main-sequence

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dead Zones and Extrasolar Planetary Properties

Most low-mass protostellar disks evolve in clustered environments where they are affected by external radiation fields, while others evolve in more isolated star-forming regions. Assuming that the magneto-rotational instability (MRI) is the main source of viscosity, we calculate the size of a poorly ionized, MRI inactive, and hence low viscosity region – the “dead zone” – in these protostellar ...

متن کامل

The Growth & Migration of Jovian Planets in Evolving Protostellar Disks with Dead Zones

The growth of Jovian mass planets during migration in their protoplanetary disks is one of the most important problems that needs to be solved in light of observations of the small orbital radii of exosolar planets. Studies of the migration of planets in standard gas disk models routinely show that the migration speeds are too high to form Jovian planets, and that such migrating planetary cores...

متن کامل

ar X iv : a st ro - p h / 04 12 27 0 v 1 1 0 D ec 2 00 4 Dead Zones and the Origin of Planetary Masses

Protoplanets accrete material from their natal protostellar disks until they are sufficiently massive to open a gap in the face of the disk's viscosity that arises from the magneto-rotational instability (MRI). By computing the ionization structure within observationally well-constrained disk models, we demonstrate that poorly ionized, low viscosity " dead zones " stretch out to 12 AU within ty...

متن کامل

Saving Planetary Systems: Dead Zones & Planetary Migration

The tidal interaction between a disk and a planet leads to the planet’s migration. It is widely believed that this mechanism explains the variety of orbital radii of extrasolar planets. A long-standing question regarding this mechanism is how to stop the migration before planets plunge into their central stars. In this paper, we propose a new, simple mechanism to significantly slow down planet ...

متن کامل

Stellar Collisions and Pulsar Planets

I describe models for the formation of planetary systems surrounding the remnants of stellar mergers and collisions. I focus primarily on models for the viscous evolution of disks suitable for the formation of the planets surrounding the pulsar B1257+12. I show that the adaptation of models for traditional protoplanetary disks which invoke quiescent or ‘dead’ zones are quite successful in produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008