Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits.

نویسندگان

  • SungWoo Nam
  • Xiaocheng Jiang
  • Qihua Xiong
  • Donhee Ham
  • Charles M Lieber
چکیده

Three-dimensional (3D), multi-transistor-layer, integrated circuits represent an important technological pursuit promising advantages in integration density, operation speed, and power consumption compared with 2D circuits. We report fully functional, 3D integrated complementary metal-oxide-semiconductor (CMOS) circuits based on separate interconnected layers of high-mobility n-type indium arsenide (n-InAs) and p-type germanium/silicon core/shell (p-Ge/Si) nanowire (NW) field-effect transistors (FETs). The DC voltage output (V(out)) versus input (V(in)) response of vertically interconnected CMOS inverters showed sharp switching at close to the ideal value of one-half the supply voltage and, moreover, exhibited substantial DC gain of approximately 45. The gain and the rail-to-rail output switching are consistent with the large noise margin and minimal static power consumption of CMOS. Vertically interconnected, three-stage CMOS ring oscillators were also fabricated by using layer-1 InAs NW n-FETs and layer-2 Ge/Si NW p-FETs. Significantly, measurements of these circuits demonstrated stable, self-sustained oscillations with a maximum frequency of 108 MHz, which represents the highest-frequency integrated circuit based on chemically synthesized nanoscale materials. These results highlight the flexibility of bottom-up assembly of distinct nanoscale materials and suggest substantial promise for 3D integrated circuits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Materials and fabrication sequences for water soluble silicon integrated circuits at the 90nm node

Articles you may be interested in Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits Appl. Compact models considering incomplete voltage swing in complementary metal oxide semiconductor circuits at ultralow voltages: A circuit perspective on limits of switching energy Monolithically integrated low-loss silic...

متن کامل

A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics

Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) a...

متن کامل

Nanowire systems: technology and design

Nanosystems are large-scale integrated systems exploiting nanoelectronic devices. In this study, we consider double independent gate, vertically stacked nanowire field effect transistors (FETs) with gate-all-around structures and typical diameter of 20 nm. These devices, which we have successfully fabricated and evaluated, control the ambipolar behaviour of the nanostructure by selectively enab...

متن کامل

Active Electrostatic Discharge (ESD) Device for On-Chip ESD Protection in Sub-Quarter-Micron Complementary Metal-Oxide Semiconductor (CMOS) Process

A novel electrostatic discharge (ESD) protection device with a threshold voltage of 0V for complementary metal-oxide semiconductor (CMOS) integrated circuits in sub-quarter-micron CMOS technology is proposed. Quite different to the traditional ESD protection devices, such an active ESD device is originally standing in its turn-on state when the IC is zapped under ESD events. Therefore, such an ...

متن کامل

High performance Si nanowire field-effect-transistors based on a CMOS inverter with tunable threshold voltage.

We successfully fabricated nanowire-based complementary metal-oxide semiconductor (NWCMOS) inverter devices by utilizing n- and p-type Si nanowire field-effect-transistors (NWFETs) via a low-temperature fabrication processing technique. We demonstrate that NWCMOS inverter devices can be operated at less than 1 V, a significantly lower voltage than that of typical thin-film based complementary m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 50  شماره 

صفحات  -

تاریخ انتشار 2009