Compact alternating group explicit method for the cubic spline solution of two point boundary value problems with significant nonlinear first derivative terms
نویسنده
چکیده
In this paper, we report the application of two parameter coupled alternating group explicit (CAGE) iteration and Newton-CAGE iteration methods for the cubic spline solution of non-linear differential equation u" = f(r,u,u') subject to given natural boundary conditions. The error analysis for CAGE iteration method is discussed in details. We compared the results of proposed CAGE iteration method with the results of corresponding two parameter alternating group explicit (TAGE) iteration method to demonstrate computationally the efficiency of the proposed method.
منابع مشابه
An ${cal O}(h^{8})$ optimal B-spline collocation for solving higher order boundary value problems
As we know the approximation solution of seventh order two points boundary value problems based on B-spline of degree eight has only ${cal O}(h^{2})$ accuracy and this approximation is non-optimal. In this work, we obtain an optimal spline collocation method for solving the general nonlinear seventh order two points boundary value problems. The ${cal O}(h^{8})$ convergence analysis, mainly base...
متن کاملNON-POLYNOMIAL SPLINE SOLUTIONS FOR SPECIAL NONLINEAR FOURTH-ORDER BOUNDARY VALUE PROBLEMS
We present a sixth-order non-polynomial spline method for the solutions of two-point nonlinear boundary value problem u(4)+f(x,u)=0, u(a)=α1, u''(a)= α2, u(b)= β1,u''(b)= β2, in off step points. Numerical method of sixth-order with end conditions of the order 6 is derived. The convergence analysis of the method has been discussed. Numerical examples are presented to illustrate the applications ...
متن کاملB-SPLINE METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEMS
In this work the collocation method based on quartic B-spline is developed and applied to two-point boundary value problem in ordinary diferential equations. The error analysis and convergence of presented method is discussed. The method illustrated by two test examples which verify that the presented method is applicable and considerable accurate.
متن کاملAn efficient method for the numerical solution of Helmholtz type general two point boundary value problems in ODEs
In this article, we propose and analyze a computational method for numerical solution of general two point boundary value problems. Method is tested on problems to ensure the computational eciency. We have compared numerical results with results obtained by other method in literature. We conclude that propose method is computationally ecient and eective.
متن کاملA new cubic B-spline method for approximating the solution of a class of nonlinear second-order boundary value problem with two dependent variables
In this paper, we will apply cubic B-splines on a uniform mesh to explore the numerical solutions and numerical derivatives of a class of nonlinear second-order boundary value problems with two dependent variables. Our new method is based on the cubic spline interpolation. The analytical solutions and any-order derivatives can be well approximated with 4th order accuracy. Furthermore, our new m...
متن کامل