Induced airflow in flying insects II . Measurement of induced flow Sanjay

نویسندگان

  • P. Sane
  • P. Jacobson
چکیده

Introduction Like rotating propeller blades, flapping wings of an insect draw air from above the wing and generate flight forces by imparting momentum to this air. Thus, a natural consequence of any flapping activity is an induced airflow along the body of the insect. This flow envelops the flying insect and influences many flight-related physiological and sensory processes. and various mass exchange processes such as oxygen, carbon dioxide and water (Wasserthal, 2001), are all profoundly affected by the structure of such flows. Thus, there exists a biophysical feedback relationship between the wing kinematics and flight-related sensory-motor physiology that is entirely mediated by the external air medium. One important biological consequence of induced airflow is its influence on mechanosensory and chemosensory organs, which receive their stimulus via the surrounding fluid medium. For example, the flightless silkworm moth Bombyx

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induced airflow in flying insects II. Measurement of induced flow.

The flapping wings of insects and birds induce a strong flow over their body during flight. Although this flow influences the sensory biology and physiology of a flying animal, there are very little data on the characteristics of this self-generated flow field or its biological consequences. A model proposed in the companion paper estimated the induced flow over flying insects. In this study, w...

متن کامل

Induced airflow in flying insects I. A theoretical model of the induced flow.

A strong induced flow structure envelops the body of insects and birds during flight. This flow influences many physiological processes including delivery of odor and mechanical stimuli to the sensory organs, as well as mass flow processes including heat loss and gas exchange in flying animals. With recent advances in near-field aerodynamics of insect and bird flight, it is now possible to dete...

متن کامل

Induced airflow in flying insects I . A theoretical model of the induced flow Sanjay

Introduction Flapping birds and insects are often likened to revolving propeller blades or rotors because their wings generate lift by steadily pushing air downward. Two influential aerodynamic models of flight in insects (Ellington, 1984c) and birds (Rayner, 1979) drew much inspiration from the extensive theoretical work on rotor aerodynamics. These models focused primarily on the far-field wa...

متن کامل

Airflow and optic flow mediate antennal positioning in flying honeybees

To maintain their speeds during navigation, insects rely on feedback from their visual and mechanosensory modalities. Although optic flow plays an essential role in speed determination, it is less reliable under conditions of low light or sparse landmarks. Under such conditions, insects rely on feedback from antennal mechanosensors but it is not clear how these inputs combine to elicit flight-r...

متن کامل

Active and passive antennal movements during visually guided steering in flying Drosophila.

Insects use feedback from a variety of sensory modalities, including mechanoreceptors on their antennae, to stabilize the direction and speed of flight. Like all arthropod appendages, antennae not only supply sensory information but may also be actively positioned by control muscles. However, how flying insects move their antennae during active turns and how such movements might influence steer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006