High-dimensional Covariance Estimation Based On Gaussian Graphical Models

نویسندگان

  • Shuheng Zhou
  • Philipp Rütimann
  • Min Xu
  • Peter Bühlmann
چکیده

Undirected graphs are often used to describe high dimensional distributions. Under sparsity conditions, the graph can be estimated using l1-penalization methods. We propose and study the following method. We combine a multiple regression approach with ideas of thresholding and refitting: first we infer a sparse undirected graphical model structure via thresholding of each among many l1-norm penalized regression functions; we then estimate the covariance matrix and its inverse using the maximum likelihood estimator. We show that under suitable conditions, this approach yields consistent estimation in terms of graphical structure and fast convergence rates with respect to the operator and Frobenius norm for the covariance matrix and its inverse. We also derive an explicit bound for the Kullback Leibler divergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block-diagonal covariance selection for high-dimensional Gaussian graphical models

Gaussian graphical models are widely utilized to infer and visualize networks of dependencies between continuous variables. However, inferring the graph is difficult when the sample size is small compared to the number of variables. To reduce the number of parameters to estimate in the model, we propose a non-asymptotic model selection procedure supported by strong theoretical guarantees based ...

متن کامل

Joint Structural Estimation of Multiple Graphical Models

Gaussian graphical models capture dependence relationships between random variables through the pattern of nonzero elements in the corresponding inverse covariance matrices. To date, there has been a large body of literature on both computational methods and analytical results on the estimation of a single graphical model. However, in many application domains, one has to estimate several relate...

متن کامل

Covariance Estimation: The GLM and Regularization Perspectives

Finding an unconstrained and statistically interpretable reparameterization of a covariance matrix is still an open problem in statistics. Its solution is of central importance in covariance estimation, particularly in the recent high-dimensional data environment where enforcing the positive-definiteness constraint could be computationally expensive. We provide a survey of the progress made in ...

متن کامل

Flexible Covariance Estimation in Graphical Gaussian Models

In this paper, we propose a class of Bayes estimators for the covariance matrix of graphical Gaussian models Markov with respect to a decomposable graph G. Working with the WPG family defined by Letac and Massam [Ann. Statist. 35 (2007) 1278–1323] we derive closed-form expressions for Bayes estimators under the entropy and squared-error losses. The WPG family includes the classical inverse of t...

متن کامل

Estimating Structured High-Dimensional Covariance and Precision Matrices: Optimal Rates and Adaptive Estimation

This is an expository paper that reviews recent developments on optimal estimation of structured high-dimensional covariance and precision matrices. Minimax rates of convergence for estimating several classes of structured covariance and precision matrices, including bandable, Toeplitz, and sparse covariance matrices as well as sparse precision matrices, are given under the spectral norm loss. ...

متن کامل

Innovated Scalable Efficient Estimation in Ultra - Large Gaussian Graphical Models

Large-scale precision matrix estimation is of fundamental importance yet challenging in many contemporary applications for recovering Gaussian graphical models. In this paper, we suggest a new approach of innovated scalable efficient estimation (ISEE) for estimating large precision matrix. Motivated by the innovated transformation, we convert the original problem into that of large covariance m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2011