Combining Float Car Data and Multispectral Satellite Images to Extract Road Features and Networks
نویسندگان
چکیده
This chapter presents an automatic methodology for the extraction of spatial road features and networks from floating car data (FCD) that was integrated with multispectral remote sensing images in metropolitan areas. This methodology is divided into two basic steps. Firstly, a spatial local statistical examination is carried out to extract the nodes of each road segment. Based on the local Moran’s I statistics, a new statistic method is developed to detect local clusters. Significance is assessed using a Monte Carlo approach to determine the probability through observing large samples under the null hypothesis of no pattern. When all the necessary nodes are detected, spatial road segments can then be organized by linking pairs of nodes, which are used as the candidate road segments for the next step. Secondly, pre-processed multispectral remote sensing images are utilised for testing those initial road segments. To prove the concept, a Metropolitan area is employed as a case study. Road segments with high significance values in the tests are selected to construct the spatial road network. The developed methodology could be adopted for the provision of high quality navigational road maps in a cost-effective manner and the experimental results are presented.
منابع مشابه
Automatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method
Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...
متن کاملCombining of Magnitude and Direction of Change Indices to Unsupervised Change Detection in Multitemporal Multispectral Remote Sensing Images
In remote sensing, image-based change detection techniques, analyze two images acquired over the same area at different times t1 and t2 to identify the changes occurred on the Earth's surface. Change detection approaches are mainly categorized as supervised and unsupervised. Generating the change index is a key step for change detection in multi-temporal remote sensing images. Unsupervised chan...
متن کاملEvaluation and comparison performance of deep neural networks FCN and RDRCNN in order to identify and extract urban road using images of Sentinel-2 with medium spatial resolution
Road extraction using remote sensing images has been one of the most interesting topics for researchers in recent years. Recently, the development of deep neural networks (DNNs) in the field of semantic segmentation has become one of the important methods of Road extraction. In the Meanwhile The majority of research in the field of road extraction using DNN in urban and non-urban areas has been...
متن کاملExtraction of Road Networks Using Pan-Sharpened Multispectral and Panchromatic QuickBird Images
Traditional multispectral classification based road extraction methods separate roads from other ground features according to spectral characteristics of individual pixels. To take use of the spatial properties of high-resolution satellite images, in this paper we integrate spectral information from the multispectral (MS) image with spatial information from the panchromatic (Pan) image for road...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کامل