Real-time detection reveals that effectors couple dynamin's GTP-dependent conformational changes to the membrane.
نویسندگان
چکیده
The GTPase dynamin is a mechanochemical enzyme involved in membrane fission, but the molecular nature of its membrane interactions and their regulation by guanine nucleotides and protein effectors remain poorly characterized. Using site-directed fluorescence labeling and several independent fluorescence spectroscopic techniques, we have developed robust assays for the detection and real-time monitoring of dynamin-membrane and dynamin-dynamin interactions. We show that dynamin interacts preferentially with highly curved, PIP2-dense membranes and inserts partially into the lipid bilayer. Our kinetic measurements further reveal that cycles of GTP binding and hydrolysis elicit major conformational rearrangements in self-assembled dynamin that favor dynamin-membrane association and dissociation, respectively. Sorting nexin 9, an abundant dynamin partner, transiently stabilizes dynamin on the membrane at the onset of stimulated GTP hydrolysis and may function to couple dynamin's mechanochemical conformational changes to membrane destabilization. Amphiphysin I has the opposite effect. Thus, dynamin's mechanochemical properties on a membrane surface are dynamically regulated by its GTPase cycle and major binding partners.
منابع مشابه
Dynamin GTPase regulation is altered by PH domain mutations found in centronuclear myopathy patients.
The large GTPase dynamin has an important membrane scission function in receptor-mediated endocytosis and other cellular processes. Self-assembly on phosphoinositide-containing membranes stimulates dynamin GTPase activity, which is crucial for its function. Although the pleckstrin-homology (PH) domain is known to mediate phosphoinositide binding by dynamin, it remains unclear how this promotes ...
متن کاملLive-Cell Imaging in Caenorhabditis elegans Reveals the Distinct Roles of Dynamin Self-Assembly and Guanosine Triphosphate Hydrolysis in the Removal of Apoptotic Cells
Dynamins are large GTPases that oligomerize along membranes. Dynamin's membrane fission activity is believed to underlie many of its physiological functions in membrane trafficking. Previously, we reported that DYN-1 (Caenorhabditis elegans dynamin) drove the engulfment and degradation of apoptotic cells through promoting the recruitment and fusion of intracellular vesicles to phagocytic cups a...
متن کاملNucleotide Dependent Switching in Rho GTPase: Conformational Heterogeneity and Competing Molecular Interactions
Ras superfamily of GTPases regulate myriad cellular processes through a conserved nucleotide (GTP/GDP) dependent switching mechanism. Unlike Ras family of GTPases, for the Rho GTPases, there is no clear evidence for the existence of "sub-states" such as state 1 &state 2 in the GTP bound form. To explore the nucleotide dependent conformational space of the Switch I loop and also to look for exis...
متن کاملAn internal GAP domain negatively regulates presynaptic dynamin in vivo
The mechanism by which the self-assembling GTPase dynamin functions in vesicle formation remains controversial. Point mutations in shibire, the Drosophila dynamin, cause temperature-sensitive (ts) defects in endocytosis. We show that the ts2 mutation, which occurs in the switch 2 region of dynamin's GTPase domain, compromises GTP binding affinity. Three second-site suppressor mutations, one in ...
متن کاملProbing Conformational Feature of a Recombinant Pyruvate Kinase by Limited Proteolysis
Pyruvate kinase is a key enzyme in glycolytic pathway that catalyzes the transphosphorylation between phosphoenolpyruvate and ADP to yield ATP and Pyruvate. Geobacillus stearothermophillus has a stable pyruvate kinase with determined crystal structure that composed of four separate domains. Given that limited proteolysis experiments can be successfully used to probe conformational features of p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 27 1 شماره
صفحات -
تاریخ انتشار 2008