Building an Associative Classifier Based on Fuzzy Association Rules
نویسندگان
چکیده
Classification based on association rules is considered to be effective and advantageous in many cases. However, there is a so-called "sharp boundary" problem in association rules mining with quantitative attribute domains. This paper aims at proposing an associative classification approach, namely Classification with Fuzzy Association Rules (CFAR), where fuzzy logic is used in partitioning the domains. In doing so, the notions of support and confidence are extended, along with the notion of compact set in dealing with rule redundancy and conflict. Furthermore, the corresponding mining algorithm is introduced and tested on benchmarking datasets. The experimental results revealed that CFAR generated better understandability in terms of fewer rules and smother boundaries than the traditional CBA approach while maintaining satisfactory accuracy.
منابع مشابه
Fuzzy Weighted Associative Classifier based on Positive and Negative Rules
Construction of effective and accurate classifier is one of the challenges facing by the researchers. Many experiments have shown that Associative Classifier is significantly more accurate than the traditional classifiers. To classify the quantitative data, Fuzzy Associative Classifier was introduced and is also proved as an effective prediction model. Mining of negative association rules have ...
متن کاملFuzzy Weighted Associative Classifier: a Predictive Technique for Health Care Data Mining
In this paper we extend the problem of classification using Fuzzy Association Rule Mining and propose the concept of Fuzzy Weighted Associative Classifier (FWAC). Classification based on Association rules is considered to be effective and advantageous in many cases. Associative classifiers are especially fit to applications where the model may assist the domain experts in their decisions. Weigh...
متن کاملRole of Interestingness Measures in CAR Rule Ordering for Associative Classifier: An Empirical Approach
Associative Classifier is a novel technique which is the integration of Association Rule Mining and Classification. The difficult task in building Associative Classifier model is the selection of relevant rules from a large number of class association rules (CARs). A very popular method of ordering rules for selection is based on confidence, support and antecedent size (CSA). Other methods are ...
متن کاملA New Class Based Associative Classification Algorithm
the association rule into classification can improve the accuracy and obtain some valuable rules and information that cannot be captured by other classification approaches. However, the rule generation procedure is very time-consuming when encountering large data set. Besides, traditional classifier building is organized in several separate phases which may also degrade the efficiency of these ...
متن کاملBuilding an Iris Plant Data Classifier Using Neural Network Associative Classification
Classification rule mining is used to discover a small set of rules in the database to form an accurate classifier. Association rules mining are used to reveal all the interesting relationship in a potentially large database. For association rule mining, the target of the discovery is not predetermined, while for classification rule mining there is one and only one predetermined target. These t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Computational Intelligence Systems
دوره 1 شماره
صفحات -
تاریخ انتشار 2008