An Efficient Primal-Dual Algorithm for Fair Combinatorial Optimization Problems

نویسندگان

  • Viet Hung Nguyen
  • Paul Weng
چکیده

We consider a general class of combinatorial optimization problems including among others allocation, multiple knapsack, matching or travelling salesman problems. The standard version of those problems is the maximum weight optimization problem where a sum of values is optimized. However, the sum is not a good aggregation function when the fairness of the distribution of those values (corresponding for example to different agents’ utilities or criteria) is important. In this paper, using the generalized Gini index (GGI), a well-known inequality measure, instead of the sum to model fairness, we formulate a new general problem, that we call fair combinatorial optimization. Although GGI is a non-linear aggregating function, a 0, 1-linear program (IP) can be formulated for finding a GGI-optimal solution by exploiting a linearization of GGI proposed by Ogryczak and Sliwinski [21]. However, the time spent by commercial solvers (e.g., CPLEX, Gurobi...) for solving (IP) increases very quickly with instances’ size and can reach hours even for relatively small-sized ones. As a faster alternative, we propose a heuristic for solving (IP) based on a primal-dual approach using Lagrangian decomposition. We demonstrate the efficiency of our method by evaluating it against the exact solution of (IP) by CPLEX on several fair optimization problems related to matching. The numerical results show that our method outputs in a very short time efficient solutions giving lower bounds that CPLEX may take several orders of magnitude longer to obtain. Moreover, for instances for which we know the optimal value, these solutions are quasi-optimal with optimality gap less than 0.3%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title of dissertation : PRIMAL - DUAL ALGORITHMS FOR COMBINATORIAL OPTIMIZATION PROBLEMS Julián

Title of dissertation: PRIMAL-DUAL ALGORITHMS FOR COMBINATORIAL OPTIMIZATION PROBLEMS Julián Mestre Doctor of Philosophy, 2007 Dissertation directed by: Professor Samir Khuller Department of Computer Science Combinatorial optimization problems such as routing, scheduling, covering and packing problems abound in everyday life. At a very high level, a combinatorial optimization problem amounts to...

متن کامل

Primal - Dual Algorithms for Combinatorial Optimization Problems

Title of dissertation: PRIMAL-DUAL ALGORITHMS FOR COMBINATORIAL OPTIMIZATION PROBLEMS Julián Mestre Doctor of Philosophy, 2007 Dissertation directed by: Professor Samir Khuller Department of Computer Science Combinatorial optimization problems such as routing, scheduling, covering and packing problems abound in everyday life. At a very high level, a combinatorial optimization problem amounts to...

متن کامل

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

The primal-dual method for approximation algorithms

In this survey, we give an overview of a technique used to design and analyze algorithms that provide approximate solutions to NP -hard problems in combinatorial optimization. Because of parallels with the primal-dual method commonly used in combinatorial optimization, we call it the primal-dual method for approximation algorithms. We show how this technique can be used to derive approximation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017