MEP and planetary climates: insights from a two-box climate model containing atmospheric dynamics.
نویسندگان
چکیده
A two-box model for equator-to-pole planetary heat transport is extended to include simple atmospheric dynamics. The surface drag coefficient CD is treated as a free parameter and solutions are calculated analytically in terms of the dimensionless planetary parameters eta (atmospheric thickness), omega (rotation rate) and xi (advective capability). Solutions corresponding to maximum entropy production (MEP) are compared with solutions previously obtained from dynamically unconstrained two-box models. As long as the advective capability xi is sufficiently large, dynamically constrained MEP solutions are identical to dynamically unconstrained MEP solutions. Consequently, the addition of a dynamical constraint does not alter the previously obtained MEP results for Earth, Mars and Titan, and an analogous result is presented here for Venus. The rate of entropy production in an MEP state is shown to be independent of rotation rate if the advective capability xi is sufficiently large (as for the four examples in the solar system), or if the rotation rate omega is sufficiently small. The model indicates, however, that the dynamical constraint does influence the MEP state when xi is small, which might be the case for some extrasolar planets. Finally, results from the model developed here are compared with previous numerical simulations in which the effect of varying surface drag coefficient on entropy production was calculated.
منابع مشابه
The two-box model of climate: limitations and applications to planetary habitability and maximum entropy production studies.
The 'two-box model' of planetary climate is discussed. This model has been used to demonstrate consistency of the equator-pole temperature gradient on Earth, Mars and Titan with what would be predicted from a principle of maximum entropy production (MEP). While useful for exposition and for generating first-order estimates of planetary heat transports, it has too low a resolution to investigate...
متن کاملHabitable Climates: The Influence of Obliquity
Extrasolar terrestrial planets with the potential to host life might have large obliquities or be subject to strong obliquity variations. We revisit the habitability of oblique planets with an energy balance climate model (EBM) allowing for dynamical transitions to ice-covered snowball states as a result of ice-albedo feedback. Despite the great simplicity of our EBM, it captures reasonably wel...
متن کاملWater Vapor and the Dynamics of Climate Changes
Water vapor is not only Earth’s dominant greenhouse gas. Through the release of latent heat when it condenses, it also plays an active role in dynamic processes that shape the global circulation of the atmosphere and thus climate. Here we present an overview of how latent heat release affects atmosphere dynamics in a broad range of climates, ranging from extremely cold to extremely warm. Contra...
متن کاملComparison of impact of climate change on building energy-saving design for two different climates; Metropolitans of Moscow and Tehran
In the present study, in order to monitor and project climate change impacts on model of the bioclimatic design, a comparative study was conducted between the Middle East and Eurasia as two different climates. This paper used the basic data from 1990 to 2010, and the CMIP5 climate models have been used to project the climate data (radiation, temperature, wind speed, and relative humidity) from ...
متن کاملPrinciples of Planetary Climate
This book introduces the reader to all the basic physical building blocks of climate needed to understand the present and past climate of Earth, the climates of Solar System planets, and the climates of the newly discovered extrasolar planets. These building blocks include thermodynamics, infrared radiative transfer, scattering, surface heat transfer, and various processes governing the evoluti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 365 1545 شماره
صفحات -
تاریخ انتشار 2010