pH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide.
نویسندگان
چکیده
The decomposition of hydrogen peroxide catalyzed by iron and copper leads to the generation of reactive oxidants capable of oxidizing various organic compounds. However, the specific nature of the reactive oxidants is still unclear, with evidence suggesting the production of hydroxyl radical or high-valent metal species. To identify the reactive species in the Fenton system, the oxidation of a series of different compounds (phenol, benzoic acid, methanol, Reactive Black 5 and arsenite) was studied for iron- and copper-catalyzed reactions at varying pH values. At lower pH values, more reactive oxidants appear to be formed in both iron and copper-catalyzed systems. The aromatic compounds, phenol and benzoic acid, were not oxidized under neutral or alkaline pH conditions, whereas methanol, Reactive Black 5, and arsenite were oxidized to a different degree, depending on the catalytic system. The oxidants responsible for the oxidation of compounds at neutral and alkaline pH values are likely to be high-valent metal complexes of iron and copper (i.e., ferryl and cupryl ions).
منابع مشابه
Epoxidation of Alkenes and Oxidation of Alcohols with Hydrogen Peroxide Catalyzed by a Fe (Br8TPPS) Supported on Amberlite IRA-400
Iron (III) meso-tetrakis(p-sulfonatophenyl)-β-octabromoporphyrin supported on Amberlite IRA- 400 [Fe(Br8 TPPS)-Ad-400] is a robust and efficient catalyst for oxidation of alkenes and alcohols at room temperature. The catalyst exhibits a high activity and stability in hydrocarbon oxidation by H2 O2 . The method was useful in the oxidation of various primary, secondary-aliphatic, alicyclic and ar...
متن کاملCatalytic Decomposition of Hydrogen Peroxide in the Presence of Synthesized Iron-Manganese oxide Nanocomposites via Different Methods
The special application of iron-manganese oxide nanocatalysts has been investigated in decomposition of hydrogen peroxide. In this research, iron-manganese oxide nanocomposites were synthesized by co-precipitation, sol-gel and mechanochemical methods using iron (III) nitrate, iron (II) sulfate and manganese (II) nitrate as starting materials. These nanocomposites were prepared on the variou...
متن کاملA silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values.
Iron oxides catalyze the conversion of hydrogen peroxide (H(2)O(2)) into oxidants capable of transforming recalcitrant contaminants. Unfortunately, the process is relatively inefficient at circumneutral pH values because of competing reactions that decompose H(2)O(2) without producing oxidants. Silica- and alumina-containing iron oxides prepared by sol-gel processing of aqueous solutions contai...
متن کاملCatalytic Decomposition of H2O2 on MnFe2O4 Nanocomposites Synthesized by Various Methods in the Presence of Silicate and Zeolite Supports
In this research iron manganese oxide nanocomposites were prepared by co-precipitation, sol-gel and mechanochemical methods by using iron (III) nitrate, iron (II) sulfate and manganese (II) nitrate as starting materials. These nanocomposites were prepared in the presence of various catalyst beds. The polyvinyl pyrrolidon (PVP) was used as a capping agent to control the agglomeration of the nano...
متن کاملCatalytic Decomposition of H2O2 on MnFe2O4 Nanocomposites Synthesized by Various Methods in the Presence of Silicate and Zeolite Supports
In this research iron manganese oxide nanocomposites were prepared by co-precipitation, sol-gel and mechanochemical methods by using iron (III) nitrate, iron (II) sulfate and manganese (II) nitrate as starting materials. These nanocomposites were prepared in the presence of various catalyst beds. The polyvinyl pyrrolidon (PVP) was used as a capping agent to control the agglomeration of the nano...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemosphere
دوره 92 6 شماره
صفحات -
تاریخ انتشار 2013