Stereotype Ordinal Regression
نویسنده
چکیده
There are a number of reasonable approaches to analysing an ordinal outcome variable. One common approach, known as the Proportional Odds (PO) Model, is implemented in Stata as ologit. If the assumptions of the PO model are not satisfied, an alternative is to treat the outcome as categorical, rather than ordinal, and use multinomial logistic regression (mlogit) in Stata. This insert describes an alternative form of ordinal regression model, the Stereotype Ordinal Regression (SOR) Model, which can be thought of as imposing ordering constraints on a multinomial model. The multinomial model provides the best possible fit to the data, at the cost of a large number of parameters which can be difficult to interpret. Stereotype regression aims to reduce the number of parameters by imposing constraints, without reducing the adequacy of the fit.
منابع مشابه
Fitting Stereotype Logistic Regression Models for Ordinal Response Variables in Educational Research (Stata)
The stereotype logistic (SL) model is an alternative to the proportional odds (PO) model for ordinal response variables when the proportional odds assumption is violated. This model seems to be underutilized. One major reason is the constraint of current statistical software packages. Statistical Package for the Social Sciences (SPSS) cannot perform the SL regression analysis, and SAS does not ...
متن کاملPrediction of ordinal outcomes when the association between predictors and outcome differs between outcome levels.
There are a number of regression models which are widely used to predict ordinal outcomes. The commonly used models assume that all predictor variables have a similar effect at all levels of the outcome variable. If this is not the case, for example if some variables predict susceptibility to a disease and others predict the severity of the disease, then a more complex model is required. One po...
متن کاملDiscrete Choice Models for Ordinal Response Variables: a Generalization of the Stereotype Model
In this paper I present a class of discrete choice models for ordinal response variables based on a generalization of the stereotype model. The stereotype model can be derived and generalized as a random utility model for ordered alternatives. Random utility models can be specified to account for heteroscedastic and correlated utilities. In the case of the generalized stereotype model this incl...
متن کاملRegression models for analyzing radiological visual grading studies – an empirical comparison
BACKGROUND For optimizing and evaluating image quality in medical imaging, one can use visual grading experiments, where observers rate some aspect of image quality on an ordinal scale. To analyze the grading data, several regression methods are available, and this study aimed at empirically comparing such techniques, in particular when including random effects in the models, which is appropria...
متن کاملOrdinal logistic regression models: application in quality of life studies.
Quality of life has been increasingly emphasized in public health research in recent years. Typically, the results of quality of life are measured by means of ordinal scales. In these situations, specific statistical methods are necessary because procedures such as either dichotomization or misinformation on the distribution of the outcome variable may complicate the inferential process. Ordina...
متن کامل