Phase-field modelling of rapid solidification in alloy systems: Spontaneous grain refinement effects

نویسنده

  • A M Mullis
چکیده

Phase-field modelling of rapid alloy solidification, in which the rejection of latent heat from the growing solid cannot be ignored, has lagged significantly behind the modelling of conventional casting practises which can be approximated as isothermal. This is in large part due to the fact that if realistic materials properties are adopted the ratio of the thermal to solute diffusivity (the Lewis number) is typically 10 10, leading to severe multi-scale problems. However, use of state-of-the-art numerical techniques such as local mesh adaptivity, implicit time-stepping and a non-linear multi-grid solver allow these difficulties to be overcome. Here we describe how the application of this model, formulated in the thin-interface limit, can help to explain the long-standing phenomenon of spontaneous grain refinement in deeply undercooled melts. We find that at intermediate undercoolings the operating point parameter, σ*, may collapse to zero, resulting in the growth of non-dendritic morphologies such as doublons and ‘dendritic seaweed’. Further increases in undercooling then lead to the re-establishment of stable dendritic growth. We postulate that remelting of such seaweed structures gives rise to the low undercooling instance of grain refinement observed in alloys.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EFFECT OF COOLING RATE AND GRAIN REFINEMENT ON THE MICROSEGREGATION IN Al-4.8 wt.% Cu ALLOY

 Microsegregation is one of the most important phenomena occurs during solidification. It usually results in formation of some unexpected second phases which generally affect the mechanical properties and specially reduce the workability of casting products. The aim of this research is to study the effect of cooling rate and grain refinement on the microsegregation in Al-4.8 wt.% Cu. For this p...

متن کامل

The Origins of Spontaneous Grain Refinement in Deeply Undercooled Metallic Melts

Phase-field modeling of rapid alloy solidification, in which the rejection of latent heat from the growing solid cannot be ignored, has lagged significantly behind the modeling of conventional casting practices which can be approximated as isothermal. This is in large part due to the fact that if realistic materials properties are adopted, the ratio of the thermal to solute diffusivity (the Lew...

متن کامل

Influence of Alloying Treatment and Rapid Solidification on the Degradation Behavior and Mechanical Properties of Mg

Magnesium (Mg) has drawn increasing attention as a tissue engineering material. However, there have been very few studies of laser-melted Mg-Zn alloys. In this study, four binary Mg-xZn (x = 2, 4, 6 and 8 wt. %) alloys were fabricated by laser melting. The influence of zinc (Zn) content and technique on the degradation behavior and mechanical properties of Mg were discussed. Results revealed th...

متن کامل

Influence of Zirconium on the Grain Refinement of Al 6063 alloy

The influence of zirconium on the grain refinement of Al 6063 alloy has been experimentally investigated. The microstructure and macrostructure of the refined alloy were investigated. The experimental results reveal that, the coarse dendrites in the microstructure of the alloy are effectively refined with the addition of zirconium to the melt prior to solidification. Grains of Al 6063 alloy can...

متن کامل

Grain Refinement and Enhancement of Mechanical Properties of Hot Extruded Rare-Earth Containing Magnesium Alloy

The effects of rare earth addition and hot extrusion process on the grain refinement of magnesium alloy were studied. The as-cast Mg-6Al-1Zn (AZ61) alloy had the average grain size of ~ 64 µm and its microstructure consisted of α-Mg and Mg17Al12 phase. By partial substitution of Al with Gd to reach Mg-4.8Gd-1.2Al-1Zn alloy, it was observed that the Mg17Al12 phase disappeared and two new interme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012